A Computer Vision System to Localize and Classify Wastes on the Streets
Littering quantification is an important step for improving cleanliness of cities. When human interpretation is too cumbersome or in some cases impossible, an objective index of cleanliness could reduce the littering by awareness actions. In this paper, we present a fully automated computer vision a...
Saved in:
Published in | Computer Vision Systems Vol. 10528; pp. 195 - 204 |
---|---|
Main Authors | , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 9783319683447 3319683446 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-68345-4_18 |
Cover
Loading…
Summary: | Littering quantification is an important step for improving cleanliness of cities. When human interpretation is too cumbersome or in some cases impossible, an objective index of cleanliness could reduce the littering by awareness actions. In this paper, we present a fully automated computer vision application for littering quantification based on images taken from the streets and sidewalks. We have employed a deep learning based framework to localize and classify different types of wastes. Since there was no waste dataset available, we built our acquisition system mounted on a vehicle. Collected images containing different types of wastes. These images are then annotated for training and benchmarking the developed system. Our results on real case scenarios show accurate detection of littering on variant backgrounds. |
---|---|
ISBN: | 9783319683447 3319683446 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-68345-4_18 |