Batch NFS
This paper shows, assuming standard heuristics regarding the number-field sieve, that a “batch NFS” circuit of area \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setle...
Saved in:
Published in | Selected Areas in Cryptography -- SAC 2014 Vol. 8781; pp. 38 - 58 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2014
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper shows, assuming standard heuristics regarding the number-field sieve, that a “batch NFS” circuit of area \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{1.181\ldots +o(1)}$$\end{document} factors \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{0.5+o(1)}$$\end{document} separate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B$$\end{document}-bit RSA keys in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{1.022\ldots +o(1)}$$\end{document}. Here \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L=\exp ((\log 2^B)^{1/3}(\log \log 2^B)^{2/3})$$\end{document}. The circuit’s area-time product (price-performance ratio) is just \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{1.704\ldots +o(1)}$$\end{document} per key. For comparison, the best area-time product known for a single key is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{1.976\ldots +o(1)}$$\end{document}.
This paper also introduces new “early-abort” heuristics implying that “early-abort ECM” improves the performance of batch NFS by a superpolynomial factor, specifically \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\exp ((c+o(1))(\log 2^B)^{1/6}(\log \log 2^B)^{5/6})$$\end{document} where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c$$\end{document} is a positive constant. |
---|---|
Bibliography: | This work was supported by the National Science Foundation under grant 1018836 and by the Netherlands Organisation for Scientific Research (NWO) under grant 639.073.005. Permanent ID of this document: 4f99b1b911984e501c099f514d8fd2ce. Date: 2014.09.17. |
ISBN: | 9783319130507 3319130501 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-13051-4_3 |