Approximation and Hardness Results for the Maximum Edges in Transitive Closure Problem

In this paper we study the following problem, named Maximum Edges in Transitive Closure, which has applications in computational biology. Given a simple, undirected graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{am...

Full description

Saved in:
Bibliographic Details
Published inCombinatorial Algorithms Vol. 8986; pp. 13 - 23
Main Authors Adamaszek, Anna, Blin, Guillaume, Popa, Alexandru
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper we study the following problem, named Maximum Edges in Transitive Closure, which has applications in computational biology. Given a simple, undirected graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} and a coloring of the vertices, remove a collection of edges from the graph such that each connected component is colorful (i.e., it does not contain two identically colored vertices) and the number of edges in the transitive closure of the graph is maximized. The problem is known to be APX-hard, and no approximation algorithms are known for it. We improve the hardness result by showing that the problem is NP-hard to approximate within a factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|^{1/3 - \varepsilon }$$\end{document}, for any constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document}. Additionally, we show that the problem is APX-hard already for the case when the number of vertex colors equals 3. We complement these results by showing the first approximation algorithm for the problem, with approximation factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2 \cdot \text {OPT}}$$\end{document}.
ISBN:3319193147
9783319193144
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-19315-1_2