A Taxonomy of Interactive Online Machine Learning Strategies

In interactive machine learning, human users and learning algorithms work together in order to solve challenging learning problems, e.g. with limited or no annotated data or trust issues. As annotating data can be costly, it is important to minimize the amount of annotated data needed for training w...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 12458; pp. 137 - 153
Main Authors Tegen, Agnes, Davidsson, Paul, Persson, Jan A.
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In interactive machine learning, human users and learning algorithms work together in order to solve challenging learning problems, e.g. with limited or no annotated data or trust issues. As annotating data can be costly, it is important to minimize the amount of annotated data needed for training while still getting a high classification accuracy. This is done by attempting to select the most informative data instances for training, where the amount of instances is limited by a labelling budget. In an online learning setting, the decision of whether or not to select an instance for labelling has to be done on-the-fly, as the data arrives in a sequential order and is only valid for a limited time period. We present a taxonomy of interactive online machine learning strategies. An interactive learning strategy determines which instances to label in an unlabelled dataset. In the taxonomy we differentiate between interactive learning strategies when the computer controls the learning process (active learning) and those when human users control the learning process (machine teaching). We then make a distinction between what triggers the learning: active learning could be triggered by uncertainty, time, or randomly, whereas machine teaching could be triggered by errors, state changes, time, or factors related to the user. We also illustrate the taxonomy by implementing versions of the different strategies and performing experiments on a benchmark dataset as well as on a synthetically generated dataset. The results show that the choice of interactive learning strategy affects performance, especially in the beginning of the online learning process, when there is a limited amount of labelled data.
ISBN:3030676609
9783030676605
3030676617
9783030676612
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-67661-2_9