Sequence of DNA flanking the exons of the HEXA gene, and identification of mutations in Tay-Sachs disease
The rapid identification of mutations causing Tay-Sachs disease requires the capacity to readily screen the regions of the HEXA gene most likely to be affected by mutation. We have sequenced the portions of the introns flanking each of the 14 HEXA exons in order to specify oligonucleotide primers fo...
Saved in:
Published in | American journal of human genetics Vol. 49; no. 5; pp. 1041 - 1054 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chicago, IL
University of Chicago Press
01.11.1991
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The rapid identification of mutations causing Tay-Sachs disease requires the capacity to readily screen the regions of the HEXA gene most likely to be affected by mutation. We have sequenced the portions of the introns flanking each of the 14 HEXA exons in order to specify oligonucleotide primers for the PCR-dependent amplification of each exon and splice-junction sequence. The amplified products were analyzed, by electrophoresis in nondenaturing polyacrylamide gels, for the presence of either heteroduplexes, derived from the annealing of normal and mutant DNA strands, or single-strand conformational polymorphisms (SSCP), derived from the renaturation of single-stranded DNA. Five novel mutations from Tay-Sachs disease patients were detected: a 5-bp deletion of TCTCC in IVS-9; a 2-bp deletion of TG in exon 5; G78 to A, giving a stop codon in exon 1; G533 to T in exon 5, producing the third amino acid substitution detected at this site; and G to C at position 1 of IVS-2, expected to produce abnormal splicing. In addition, two mutations, (G1496 to A in exon 13 and a 4-bp insertion in exon 11) that have previously been reported were identified. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0002-9297 1537-6605 |