Cervical spinal 5-HT2A and 5-HT2B receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation

Serotonin (5-HT) is a key regulator of spinal respiratory motor plasticity. For example, spinal 5-HT receptor activation is necessary for the induction of phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity triggered by moderate acute intermittent hypoxia (mAIH). mAIH-induc...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 127; no. 2; pp. 432 - 443
Main Authors Tadjalli, Arash, Mitchell, Gordon S
Format Journal Article
LanguageEnglish
Published Bethesda American Physiological Society 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Serotonin (5-HT) is a key regulator of spinal respiratory motor plasticity. For example, spinal 5-HT receptor activation is necessary for the induction of phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity triggered by moderate acute intermittent hypoxia (mAIH). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum 5-HT-receptor antagonist, methysergide. However, methysergide does not allow distinctions between the relative contributions of different 5-HT receptor subtypes. Intravenous administration of the Gq protein-coupled 5-HT2A/2C receptor antagonist ketanserin blocks mAIH-induced pLTF when administered before, but not after, mAIH; thus, 5-HT2 receptor activation is necessary for the induction but not maintenance of mAIH-induced pLTF. However, systemic ketanserin administration does not identify the site of the relevant 5-HT2A/2C receptors. Furthermore, this approach does not differentiate between the roles of 5-HT2A versus 5-HT2C receptors, nor does it preclude involvement of other Gq protein-coupled metabotropic 5-HT receptors capable of eliciting long-lasting phrenic motor facilitation, such as 5-HT2B receptors. Here we tested the hypothesis that mAIH-induced pLTF requires cervical spinal 5-HT2 receptor activation and determined which 5-HT2 receptor subtypes are involved. Anesthetized, paralyzed, and ventilated adult male Sprague Dawley rats were pretreated intrathecally with cervical (~C3-C5) spinal injections of subtype selective 5-HT2A/2C, 5-HT2B, or 5-HT2C receptor antagonists before mAIH. Whereas cervical spinal 5-HT2C receptor inhibition had no impact on mAIH-induced pLTF, pLTF was no longer observed after pretreatment with either 5-HT2A/2C or 5-HT2B receptor antagonists. Furthermore, spinal pretreatment with an MEK/ERK MAPK inhibitor blocked phrenic motor facilitation elicited by intrathecal injections of 5-HT2A but not 5-HT2B receptor agonists. Thus, mAIH-induced pLTF requires concurrent cervical spinal activation of both 5-HT2A and 5-HT2B receptors. However, these distinct receptor subtypes contribute to phrenic motor facilitation via distinct downstream signaling cascades that differ in their requirement for ERK MAPK signaling. The demonstration that both 5-HT2A and 5-HT2B receptors make unique contributions to mAIH-induced pLTF advances our understanding of mechanisms that underlie 5-HT-induced phrenic motor plasticity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.01113.2018