Mass spectrometric analysis of leukotriene A4 and other chemically reactive metabolites of arachidonic acid

The biosynthesis of prostaglandins and leukotrienes proceeds through the formation of chemically reactive intermediates leukotriene A4 (LTA4) and prostaglandin H2 (PGH2) which in aqueous solutions have chemical half-lives of 3 s and 3 min, respectively. Prostacyclin (PGI2) is another chemically reac...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Society for Mass Spectrometry Vol. 13; no. 10; pp. 1227 - 1234
Main Authors DICKINSON, Jennifer S, MURPHY, Robert C
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Science 01.10.2002
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The biosynthesis of prostaglandins and leukotrienes proceeds through the formation of chemically reactive intermediates leukotriene A4 (LTA4) and prostaglandin H2 (PGH2) which in aqueous solutions have chemical half-lives of 3 s and 3 min, respectively. Prostacyclin (PGI2) is another chemically reactive prostanoid that has a chemical half-life of 3-4 min. The recent development of reversed phase HPLC stationary phases that are stable to elevated pH (pH 10-12) without significant column damage has permitted direct analysis of these acid-sensitive eicosanoids. Using electrospray ionization, molecular anions [M - H]- of these compounds were observed at m/z 317 for LTA4 and m/z 351 for both PGH2 and PGI2. The mechanism of formation of ions derived from collisional activation of LTA4 was studied using stable isotope labeled and chemical analogs of LTA4 and found to involve formation of highly conjugated anions at m/z 261 and 163. The collisional activation of the molecular anion of PGH2 yielded a product ion spectrum identical to that observed for the isomeric prostaglandins PGE2 and PGD2. However, it was possible to baseline separate PGE2, PDG2, and PGH2 by reversed phase HPLC using basic HPLC mobile phases. The collisional activation of PGI2 led to a family of abundant ions including highly conjugated carbon-centered and oxygen-centered radical species (m/z 245 and 205) likely derived from the attack of the carboxylate anion on the cyclic enolether of PGI2 as well as the most abundant product ion (m/z 215) which formed following loss of neutral hexanal and water. The structures of these product ions were consistent with high resolution measurements measured in a quadrupole time-of-flight mass spectrometer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1044-0305
1879-1123
DOI:10.1016/S1044-0305(02)00456-7