CaGdF5 based heterogeneous core@shell upconversion nanoparticles for sensitive temperature measurement
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted great attention in temperature sensing because of their widespread thermal quenching effect (TQE), a phenomenon in which luminescence intensity decreases as the temperature increases. However, enhancing the TQE of activated ions with...
Saved in:
Published in | RSC advances Vol. 13; no. 13; pp. 8535 - 8539 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.03.2023
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted great attention in temperature sensing because of their widespread thermal quenching effect (TQE), a phenomenon in which luminescence intensity decreases as the temperature increases. However, enhancing the TQE of activated ions without changing the dopants or the host is still challenging. Herein, Yb3+ and Er3+ codoped UCNPs in a cubic CaGdF5 host were synthesized by a coprecipitation method for optical temperature sensing. Compared with the homogeneous shell (CaGdF5), those heterogeneous (CaF2) shelled UCNPs exhibited stronger upconversion luminescence (UCL) due to the significantly reduced multiphonon nonradiative relaxation. Further, we investigated the effects of homogeneous and heterogeneous shells on TQE. The relationship between the intensity ratio of the green emission bands of Er3+ ions (2H11/2 → 4I15/2 and 4S3/2 → 4I15/2) and temperature are obtained for these two core@shell UCNPs. The results demonstrated that the UCNPs with CaF2 shells are more sensitive to temperature in the 200–300 K. The maximum thermal sensitivity of CaGdF5:Yb,Er@CaF2 could reach 2.2% K−1 at 200 K. These results indicate that the heterogeneous core@shell UCNPs are promising for use as optical temperature sensors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2046-2069 |
DOI: | 10.1039/d3ra00716b |