Highly Sensitive Wearable Sensor Based on (001)‐Orientated TiO2 for Real‐Time Electrochemical Detection of Dopamine, Tyrosine, and Paracetamol

The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real‐time measurements of these bioanalytes have important clinical implications for patients with Parkins...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 22; pp. e2312238 - n/a
Main Authors Zhang, Tianyao, Zhu, Jia, Xie, Maowen, Meng, Ke, Yao, Guang, Pan, Taisong, Gao, Min, Cheng, Huanyu, Lin, Yuan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real‐time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost‐effective method to prepare high‐quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)‐facets. The as‐fabricated TiO2 film supported by a carbon cloth electrode (i.e., TiO2–CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM−1 cm−2), Tyr (0.126 µA µM−1 cm−2), and PA (0.0841 µA µM−1 cm−2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2–CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin‐interfaced patch with microfluidic sampling and wireless transmission units for real‐time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2–CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders. The free‐standing titanium dioxide film can be transferred to carbon cloth (TiO2‐CC) to form a highly sensitive flexible electrochemical sensor. The TiO2‐CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of dopamine or an integrated skin‐interfaced patch with microfluidic sampling and wireless transmission units for real‐time detection of the sweat tyrosine and paracetamol concentration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202312238