Titanium Vacancies in TiO2 Nanofibers Enable Highly Efficient Photodriven Seawater Splitting
Invited for the cover of this issue are Xiao‐Yu Yang and co‐workers at Wuhan University of Technology, Heinrich‐Heine‐Universität Düsseldorf, University of the Witwatersrand, and Ben‐Gurion University of the Negev. The image depicts Ti vacancies in TiO2 as powerful drivers of photo‐ and photo‐electr...
Saved in:
Published in | Chemistry : a European journal Vol. 27; no. 57; p. 14142 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
13.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Invited for the cover of this issue are Xiao‐Yu Yang and co‐workers at Wuhan University of Technology, Heinrich‐Heine‐Universität Düsseldorf, University of the Witwatersrand, and Ben‐Gurion University of the Negev. The image depicts Ti vacancies in TiO2 as powerful drivers of photo‐ and photo‐electrocatalytic seawater splitting for hydrogen production. Read the full text of the article at 10.1002/chem.202101817.
“We think this can provide new insight into the design of high‐performance catalysts for seawater splitting.” Read more about the story behind the cover in the Cover Profile and about the research itself on page 14202 ff. (DOI: 10.1002/chem.202101817). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0947-6539 1521-3765 1521-3765 |
DOI: | 10.1002/chem.202103410 |