The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes

The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 7; p. 11479
Main Authors Pereira, Bernard, Chin, Suet-Feung, Rueda, Oscar M, Vollan, Hans-Kristian Moen, Provenzano, Elena, Bardwell, Helen A, Pugh, Michelle, Jones, Linda, Russell, Roslin, Sammut, Stephen-John, Tsui, Dana W Y, Liu, Bin, Dawson, Sarah-Jane, Abraham, Jean, Northen, Helen, Peden, John F, Mukherjee, Abhik, Turashvili, Gulisa, Green, Andrew R, McKinney, Steve, Oloumi, Arusha, Shah, Sohrab, Rosenfeld, Nitzan, Murphy, Leigh, Bentley, David R, Ellis, Ian O, Purushotham, Arnie, Pinder, Sarah E, Børresen-Dale, Anne-Lise, Earl, Helena M, Pharoah, Paul D, Ross, Mark T, Aparicio, Samuel, Caldas, Carlos
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 10.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
Present address: Center for Molecular Oncology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
These authors jointly supervised this work
ISSN:2041-1723
DOI:10.1038/ncomms11479