Change Detection in Multivariate Datastreams Controlling False Alarms
We introduce QuantTree Exponentially Weighted Moving Average (QT-EWMA), a novel change-detection algorithm for multivariate datastreams that can operate in a nonparametric and online manner. QT-EWMA can be configured to yield a target Average Run Length (ARL0 $$_0$$ ), thus controlling the expected...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Research Track Vol. 12975; pp. 421 - 436 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce QuantTree Exponentially Weighted Moving Average (QT-EWMA), a novel change-detection algorithm for multivariate datastreams that can operate in a nonparametric and online manner. QT-EWMA can be configured to yield a target Average Run Length (ARL0 $$_0$$ ), thus controlling the expected time before a false alarm. Control over false alarms has many practical implications and is rarely guaranteed by online change-detection algorithms that can monitor multivariate datastreams whose distribution is unknown. Our experiments, performed on synthetic and real-world datasets, demonstrate that QT-EWMA controls the ARL0 $$_0$$ and the false alarm rate better than state-of-the-art methods operating in similar conditions, achieving comparable detection delays. |
---|---|
Bibliography: | Electronic supplementary materialThe online version of this chapter (https://doi.org/10.1007/978-3-030-86486-6_26) contains supplementary material, which is available to authorized users. Original Abstract: We introduce QuantTree Exponentially Weighted Moving Average (QT-EWMA), a novel change-detection algorithm for multivariate datastreams that can operate in a nonparametric and online manner. QT-EWMA can be configured to yield a target Average Run Length (ARL0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document}), thus controlling the expected time before a false alarm. Control over false alarms has many practical implications and is rarely guaranteed by online change-detection algorithms that can monitor multivariate datastreams whose distribution is unknown. Our experiments, performed on synthetic and real-world datasets, demonstrate that QT-EWMA controls the ARL0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0$$\end{document} and the false alarm rate better than state-of-the-art methods operating in similar conditions, achieving comparable detection delays. |
ISBN: | 3030864855 9783030864859 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-86486-6_26 |