Impact of Predictive Learning Analytics on Course Awarding Gap of Disadvantaged Students in STEM

In this work, we investigate the degree-awarding gap in distance higher education by studying the impact of a Predictive Learning Analytics system, when applying it to 3 STEM (Science, Technology, Engineering and Mathematics) courses with over 1,500 students. We focus on Black, Asian and Minority Et...

Full description

Saved in:
Bibliographic Details
Published inArtificial Intelligence in Education Vol. 12749; pp. 190 - 195
Main Authors Hlosta, Martin, Herodotou, Christothea, Bayer, Vaclav, Fernandez, Miriam
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we investigate the degree-awarding gap in distance higher education by studying the impact of a Predictive Learning Analytics system, when applying it to 3 STEM (Science, Technology, Engineering and Mathematics) courses with over 1,500 students. We focus on Black, Asian and Minority Ethnicity (BAME) students and students from areas with high deprivation, a proxy for low socio-economic status. Nineteen teachers used the system to obtain predictions of which students were at risk of failing and got in touch with them to support them (intervention group). The learning outcomes of these students were compared with students whose teachers did not use the system (comparison group). Our results show that students in the intervention group had 7% higher chances of passing the course, when controlling for other potential factors of success, with the actual pass rates being 64% vs 61%. When disaggregated: 1) BAME students had 10% higher pass rates (55 %vs 45%) than BAME students in the comparison group and 2) students from the most deprived areas had 4% higher pass rates (58% vs 54%) in the intervention group compared to the comparison group.
ISBN:9783030782696
3030782697
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-78270-2_34