Verification of Variability-Intensive Stochastic Systems with Statistical Model Checking
We propose a simulation-based approach to verify Variability-Intensive Systems (VISs) with stochastic behaviour. Given an LTL formula and a model of the VIS behaviour, our method estimates the probability for each variant to satisfy the formula. This allows us to learn the products of the VIS for wh...
Saved in:
Published in | Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning Vol. 13703; pp. 448 - 471 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer
2022
Springer Nature Switzerland |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3031197585 9783031197581 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-19759-8_27 |
Cover
Summary: | We propose a simulation-based approach to verify Variability-Intensive Systems (VISs) with stochastic behaviour. Given an LTL formula and a model of the VIS behaviour, our method estimates the probability for each variant to satisfy the formula. This allows us to learn the products of the VIS for which the probability stands above a certain threshold. To achieve this, our method samples VIS executions from all variants at once and keeps track of the occurrence probability of these executions in any given variant. The efficiency of this algorithm relies on Algebraic Decision Diagram (ADD), a dedicated data structure that enables orthogonal treatment of variability, stochasticity and property satisfaction. We implemented our approach as an extension of the ProVeLines model checker. Our experiments validate that our method can produce accurate estimations of the probability for the variants to satisfy the given properties. |
---|---|
ISBN: | 3031197585 9783031197581 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-19759-8_27 |