How to Simulate Message-Passing Algorithms in Mobile Agent Systems with Faults

We propose a fault-tolerant algorithm to simulate message-passing algorithms in mobile agent systems. We consider a mobile agent system with k agents where f of them may crash for a given f (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{ams...

Full description

Saved in:
Bibliographic Details
Published inStabilization, Safety, and Security of Distributed Systems Vol. 10616; pp. 234 - 249
Main Authors Gotoh, Tsuyoshi, Ooshita, Fukuhito, Kakugawa, Hirotsugu, Masuzawa, Toshimitsu
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a fault-tolerant algorithm to simulate message-passing algorithms in mobile agent systems. We consider a mobile agent system with k agents where f of them may crash for a given f (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le k-1$$\end{document}). The algorithm simulates a message-passing algorithm, say Z, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((m+M)f)$$\end{document} total agent moves where m is the number of links in the network and M is the total number of messages created in the simulated execution of Z. The previous algorithm [5] can tolerate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} agent crashes but requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((m+nM)k)$$\end{document} total agent moves. Therefore, our algorithm improves the total number of agent moves for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=k-1$$\end{document} and requires a smaller number of total moves if f is smaller.
ISBN:9783319690834
3319690833
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-69084-1_16