How to Simulate Message-Passing Algorithms in Mobile Agent Systems with Faults
We propose a fault-tolerant algorithm to simulate message-passing algorithms in mobile agent systems. We consider a mobile agent system with k agents where f of them may crash for a given f (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{ams...
Saved in:
Published in | Stabilization, Safety, and Security of Distributed Systems Vol. 10616; pp. 234 - 249 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a fault-tolerant algorithm to simulate message-passing algorithms in mobile agent systems. We consider a mobile agent system with k agents where f of them may crash for a given f (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le k-1$$\end{document}). The algorithm simulates a message-passing algorithm, say Z, with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O((m+M)f)$$\end{document} total agent moves where m is the number of links in the network and M is the total number of messages created in the simulated execution of Z. The previous algorithm [5] can tolerate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k-1$$\end{document} agent crashes but requires \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O((m+nM)k)$$\end{document} total agent moves. Therefore, our algorithm improves the total number of agent moves for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f=k-1$$\end{document} and requires a smaller number of total moves if f is smaller. |
---|---|
ISBN: | 9783319690834 3319690833 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-69084-1_16 |