Modification of tooth and enamel characteristics following the Er,Cr:YSGG laser treatment
Lasers have been widely used in the dental field to treat a number of applications in dentistry. The main objective of this study is to analyse the modification of tooth composition following the Er,Cr:YSGG laser procedure. In this study, human premolar teeth were collected and prepared. The samples...
Saved in:
Published in | AIP conference proceedings Vol. 1791; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
19.12.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | Lasers have been widely used in the dental field to treat a number of applications in dentistry. The main objective of this study is to analyse the modification of tooth composition following the Er,Cr:YSGG laser procedure. In this study, human premolar teeth were collected and prepared. The samples were sectioned and molded. 3M Unitek Transbond™ Plus Self Etching Primer adhesive materials were applied to the tooth surface. Er,Cr:YSGG laser with a wavelength of 2790 nm was used in this study to remove the adhesive materials on the enamel surface. The irradiation process was done with four different output powers that are 0.25, 0.5, 0.75, and 1.0 W. The change of tooth characteristics was analysed by observing the morphology of the enamel surface and the elemental composition usinga Field Emission Scanning Electron Microscope (FESEM) and Electron Dispersive X-ray Spectrometer (EDX). Calcium (Ca), phosphorus (P), sodium (Na), oxygen (O), and carbon (C) were the elementsidentified by EDX in the samples. Additionally, oxygen was the most abundant element found in the sample. The level of oxygen composition decreased after laser irradiation while the carbon element increased. Another element, calcium was found to be decreasing due to the process of applying adhesive materials on the enamel surface. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4968859 |