FCNN: Fourier Convolutional Neural Networks

The Fourier domain is used in computer vision and machine learning as image analysis tasks in the Fourier domain are analogous to spatial domain methods but are achieved using different operations. Convolutional Neural Networks (CNNs) use machine learning to achieve state-of-the-art results with res...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 10534; pp. 786 - 798
Main Authors Pratt, Harry, Williams, Bryan, Coenen, Frans, Zheng, Yalin
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Fourier domain is used in computer vision and machine learning as image analysis tasks in the Fourier domain are analogous to spatial domain methods but are achieved using different operations. Convolutional Neural Networks (CNNs) use machine learning to achieve state-of-the-art results with respect to many computer vision tasks. One of the main limiting aspects of CNNs is the computational cost of updating a large number of convolution parameters. Further, in the spatial domain, larger images take exponentially longer than smaller image to train on CNNs due to the operations involved in convolution methods. Consequently, CNNs are often not a viable solution for large image computer vision tasks. In this paper a Fourier Convolution Neural Network (FCNN) is proposed whereby training is conducted entirely within the Fourier domain. The advantage offered is that there is a significant speed up in training time without loss of effectiveness. Using the proposed approach larger images can therefore be processed within viable computation time. The FCNN is fully described and evaluated. The evaluation was conducted using the benchmark Cifar10 and MNIST datasets, and a bespoke fundus retina image dataset. The results demonstrate that convolution in the Fourier domain gives a significant speed up without adversely affecting accuracy. For simplicity the proposed FCNN concept is presented in the context of a basic CNN architecture, however, the FCNN concept has the potential to improve the speed of any neural network system involving convolution.
Bibliography:Electronic supplementary materialThe online version of this chapter (https://doi.org/10.1007/978-3-319-71249-9_47) contains supplementary material, which is available to authorized users.
ISBN:3319712489
9783319712482
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-71249-9_47