Neural Predictive Monitoring for Collective Adaptive Systems

Reliable bike-sharing systems can lead to numerous environmental, economic and social benefits and therefore play a central role in the effective development of smart cities. Bike-sharing models deal with spatially distributed stations and interact with an unpredictable environment, the users. Monit...

Full description

Saved in:
Bibliographic Details
Published inLeveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning Vol. 13703; pp. 30 - 46
Main Authors Cairoli, Francesca, Paoletti, Nicola, Bortolussi, Luca
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN3031197585
9783031197581
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-19759-8_3

Cover

More Information
Summary:Reliable bike-sharing systems can lead to numerous environmental, economic and social benefits and therefore play a central role in the effective development of smart cities. Bike-sharing models deal with spatially distributed stations and interact with an unpredictable environment, the users. Monitoring the trustworthiness of such a collective system is of paramount importance to ensure a good quality of the delivered service, but this task can become computationally demanding due to the complexity of the model under study. Neural Predictive Monitoring (NPM) [5], a neural-network learning-based approach to predictive monitoring (PM) with statistical guarantees, can be employed to preemptively detect violations of a specific requirement – e.g. a station has no more bikes available or a station is full. The computational efficiency of NPM makes PM applicable at runtime even on embedded devices with limited computational power. The goal of this paper is to demonstrate the applicability of NPM on collective adaptive systems such as bike-sharing systems. In particular, we first analyze the performance of NPM over a collective system evolving deterministically. Then, following [7], we tackle a more realistic scenario, where sensors allow only for partial observability and where the system evolves in a stochastic fashion. We evaluate the approach on multiple bike sharing network topologies, obtaining highly accurate predictions and effective error detection rules.
Bibliography:This work has been partially supported by the PRIN project “SEDUCE” n. 2017TWRCNB.
ISBN:3031197585
9783031197581
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-19759-8_3