Solution conformation of an oligonucleotide containing a G.G mismatch determined by nuclear magnetic resonance and molecular mechanics

We have determined by two-dimensional nuclear magnetic resonance studies and molecular mechanics calculations the three dimensional solution structure of the non-selfcomplementary oligonucleotide, d(GAGGAGGCACG). d(CGTGCGTCCTC) in which the central base pair is G.G. This is the first structural dete...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 19; no. 24; pp. 6771 - 6779
Main Authors COGNET, J. A. H, GABARRO-ARPA, J, LE BRET, M, VAN DER MAREL, G. A, VAN BOOM, J. H, FAZAKERLEY, G. V
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 25.12.1991
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have determined by two-dimensional nuclear magnetic resonance studies and molecular mechanics calculations the three dimensional solution structure of the non-selfcomplementary oligonucleotide, d(GAGGAGGCACG). d(CGTGCGTCCTC) in which the central base pair is G.G. This is the first structural determination of a G.G mismatch in a oligonucleotide. Two dimensional nuclear magnetic resonance spectra show that the bases of the mismatched pair are stacked into the helix and that the helix adopts a classical B-DNA form. Spectra of the exchangeable protons show that the two guanosines are base paired via their imino protons. For the non-exchangeable protons and for some of the exchangeable protons nuclear Overhauser enhancement build up curves at short mixing times have been measured. These give 84 proton-proton distances which are sensitive to the helix conformation. One of the guanosines adopts a normal anti conformation while the other is syn or close to syn. All non-terminal sugars are C2' endo. These data sets were incorporated into the refinement of the oligonucleotide structure by molecular mechanics calculations. The G.G mismatch shows a symmetrical base pairing structure. Although the mismatch is very bulky many of its features are close to that of normal B-DNA. The mismatch induces a small lateral shift in the helix axis and the sum of the helical twist above and below the mismatch is close to that of B-DNA.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/19.24.6771