Programming by Optimisation Meets Parameterised Algorithmics: A Case Study for Cluster Editing

Inspired by methods and theoretical results from parameterised algorithmics, we improve the state of the art in solving Cluster Editing, a prominent NP-hard clustering problem with applications in computational biology and beyond. In particular, we demonstrate that an extension of a certain preproce...

Full description

Saved in:
Bibliographic Details
Published inLearning and Intelligent Optimization Vol. 8994; pp. 43 - 58
Main Authors Hartung, Sepp, Hoos, Holger H.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319190839
3319190830
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-19084-6_5

Cover

Loading…
More Information
Summary:Inspired by methods and theoretical results from parameterised algorithmics, we improve the state of the art in solving Cluster Editing, a prominent NP-hard clustering problem with applications in computational biology and beyond. In particular, we demonstrate that an extension of a certain preprocessing algorithm, called the (k+1) $$(k+1)$$ -data reduction rule in parameterised algorithmics, embedded in a sophisticated branch-&-bound algorithm, improves over the performance of existing algorithms based on Integer Linear Programming (ILP) and branch-&-bound. Furthermore, our version of the (k+1) $$(k+1)$$ -rule outperforms the theoretically most effective preprocessing algorithm, which yields a 2k-vertex kernel. Notably, this 2k-vertex kernel is analysed empirically for the first time here. Our new algorithm was developed by integrating Programming by Optimisation into the classical algorithm engineering cycle – an approach which we expect to be successful in many other contexts.
Bibliography:Original Abstract: Inspired by methods and theoretical results from parameterised algorithmics, we improve the state of the art in solving Cluster Editing, a prominent NP-hard clustering problem with applications in computational biology and beyond. In particular, we demonstrate that an extension of a certain preprocessing algorithm, called the (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)$$\end{document}-data reduction rule in parameterised algorithmics, embedded in a sophisticated branch-&-bound algorithm, improves over the performance of existing algorithms based on Integer Linear Programming (ILP) and branch-&-bound. Furthermore, our version of the (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)$$\end{document}-rule outperforms the theoretically most effective preprocessing algorithm, which yields a 2k-vertex kernel. Notably, this 2k-vertex kernel is analysed empirically for the first time here. Our new algorithm was developed by integrating Programming by Optimisation into the classical algorithm engineering cycle – an approach which we expect to be successful in many other contexts.
Sepp Hartung—Major parts of this work were done during a research visit of SH at the University of British Columbia in Vancouver (Canada), supported by a “DFG Forschungsstipendium” (HA 7296/1-1).
ISBN:9783319190839
3319190830
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-19084-6_5