Programming by Optimisation Meets Parameterised Algorithmics: A Case Study for Cluster Editing
Inspired by methods and theoretical results from parameterised algorithmics, we improve the state of the art in solving Cluster Editing, a prominent NP-hard clustering problem with applications in computational biology and beyond. In particular, we demonstrate that an extension of a certain preproce...
Saved in:
Published in | Learning and Intelligent Optimization Vol. 8994; pp. 43 - 58 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2015
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319190839 3319190830 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-19084-6_5 |
Cover
Loading…
Summary: | Inspired by methods and theoretical results from parameterised algorithmics, we improve the state of the art in solving Cluster Editing, a prominent NP-hard clustering problem with applications in computational biology and beyond. In particular, we demonstrate that an extension of a certain preprocessing algorithm, called the (k+1) $$(k+1)$$ -data reduction rule in parameterised algorithmics, embedded in a sophisticated branch-&-bound algorithm, improves over the performance of existing algorithms based on Integer Linear Programming (ILP) and branch-&-bound. Furthermore, our version of the (k+1) $$(k+1)$$ -rule outperforms the theoretically most effective preprocessing algorithm, which yields a 2k-vertex kernel. Notably, this 2k-vertex kernel is analysed empirically for the first time here. Our new algorithm was developed by integrating Programming by Optimisation into the classical algorithm engineering cycle – an approach which we expect to be successful in many other contexts. |
---|---|
Bibliography: | Original Abstract: Inspired by methods and theoretical results from parameterised algorithmics, we improve the state of the art in solving Cluster Editing, a prominent NP-hard clustering problem with applications in computational biology and beyond. In particular, we demonstrate that an extension of a certain preprocessing algorithm, called the (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)$$\end{document}-data reduction rule in parameterised algorithmics, embedded in a sophisticated branch-&-bound algorithm, improves over the performance of existing algorithms based on Integer Linear Programming (ILP) and branch-&-bound. Furthermore, our version of the (k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)$$\end{document}-rule outperforms the theoretically most effective preprocessing algorithm, which yields a 2k-vertex kernel. Notably, this 2k-vertex kernel is analysed empirically for the first time here. Our new algorithm was developed by integrating Programming by Optimisation into the classical algorithm engineering cycle – an approach which we expect to be successful in many other contexts. Sepp Hartung—Major parts of this work were done during a research visit of SH at the University of British Columbia in Vancouver (Canada), supported by a “DFG Forschungsstipendium” (HA 7296/1-1). |
ISBN: | 9783319190839 3319190830 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-19084-6_5 |