Real-Time Computability of Real Numbers by Chemical Reaction Networks

We explore the class of real numbers that are computed in real time by deterministic chemical reaction networks that are integral in the sense that all their reaction rate constants are positive integers. We say that such a reaction network computes a real number \documentclass[12pt]{minimal} \usepa...

Full description

Saved in:
Bibliographic Details
Published inUnconventional Computation and Natural Computation Vol. 10240; pp. 29 - 40
Main Authors Huang, Xiang, Klinge, Titus H., Lathrop, James I., Li, Xiaoyuan, Lutz, Jack H.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We explore the class of real numbers that are computed in real time by deterministic chemical reaction networks that are integral in the sense that all their reaction rate constants are positive integers. We say that such a reaction network computes a real number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} in real time if it has a designated species X such that, when all species concentrations are set to zero at time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = 0$$\end{document}, the concentration x(t) of X is within \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-t}$$\end{document} of the fractional part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} at all times \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, and the concentrations of all other species are bounded. We show that every algebraic number is real time computable by chemical reaction networks in this sense. We discuss possible implications of this for the 1965 Hartmanis-Stearns conjecture, which says that no irrational algebraic number is real time computable by a Turing machine.
Bibliography:This research was supported in part by National Science Foundation Grants 1247051 and 1545028.
ISBN:3319581864
9783319581866
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-58187-3_3