Accurate Scene Text Recognition Based on Recurrent Neural Network

Scene text recognition is a useful but very challenging task due to uncontrolled condition of text in natural scenes. This paper presents a novel approach to recognize text in scene images. In the proposed technique, a word image is first converted into a sequential column vectors based on Histogram...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision -- ACCV 2014 Vol. 9003; pp. 35 - 48
Main Authors Su, Bolan, Lu, Shijian
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Scene text recognition is a useful but very challenging task due to uncontrolled condition of text in natural scenes. This paper presents a novel approach to recognize text in scene images. In the proposed technique, a word image is first converted into a sequential column vectors based on Histogram of Oriented Gradient (HOG). The Recurrent Neural Network (RNN) is then adapted to classify the sequential feature vectors into the corresponding word. Compared with most of the existing methods that follow a bottom-up approach to form words by grouping the recognized characters, our proposed method is able to recognize the whole word images without character-level segmentation and recognition. Experiments on a number of publicly available datasets show that the proposed method outperforms the state-of-the-art techniques significantly. In addition, the recognition results on publicly available datasets provide a good benchmark for the future research in this area.
ISBN:3319168649
9783319168647
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-16865-4_3