Photoinduced Metallonitrene Formation by N2 Elimination from Azide Diradical Ligands
Transition metal nitrides/nitrenes are highly promising reagents for catalytic nitrogen atom transfer reactivity. They are typically prepared in situ upon optically induced N2-elimination from azido precursors. A full exploitation of their catalytic potential, however, requires in-depth knowledge of...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 42; p. e202309618 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.10.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Transition metal nitrides/nitrenes are highly promising reagents for catalytic nitrogen atom transfer reactivity. They are typically prepared in situ upon optically induced N2-elimination from azido precursors. A full exploitation of their catalytic potential, however, requires in-depth knowledge of the primary photo-induced processes and the structural/electronic factors mediating the N2-loss with birth of the terminal metal-nitrogen core. Using femtosecond infrared-spectroscopy, we elucidate here the primary molecular-level mechanisms responsible for the formation of a unique platinum(II) nitrene with a triplet ground state from a closed-shell platinum(II) azide precursor. The spectroscopic data in combination with quantum-chemical calculations provide compelling evidence that product formation requires the initial occupation of a singlet excited state with an anionic azide diradical ligand that is bound to a low-spin d8-configured PtII ion. Subsequent intersystem-crossing generates the Pt-bound triplet azide diradical, which smoothly evolves into the triplet nitrene via N2-loss in a near barrierless adiabatic dissociation. Our data highlight the importance of the productive, N2-releasing state possessing azide ππ* character as a design principle for accessing efficient N-atom-transfer catalysts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202309618 |