A fine single Pd microwire H2 sensor fabricated by using a femtosecond laser for a wide detection range at room temperature

We reported a fine H2 sensor based on single Pd microwires (SPMs) by femtosecond-laser-induced deposition of palladium nanoparticles (PdNPs), which exhibits excellent H2 sensing performance. The PdNPs with good dispersion were prepared by ultrasonic assisted one-step solution synthesis. The sensor h...

Full description

Saved in:
Bibliographic Details
Published inNanoscale advances Vol. 4; no. 19; pp. 4162 - 4168
Main Authors Zhu, He, Dai, Yun-Zhi, Sun, Xiang-Chao, Xia, Hong
Format Journal Article
LanguageEnglish
Published RSC 27.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We reported a fine H2 sensor based on single Pd microwires (SPMs) by femtosecond-laser-induced deposition of palladium nanoparticles (PdNPs), which exhibits excellent H2 sensing performance. The PdNPs with good dispersion were prepared by ultrasonic assisted one-step solution synthesis. The sensor has a wide detection range of 0.001-4.0% H2 sensing at room temperature. With the increase of the H2 concentration, the SPM sensor presents two sensing mechanisms, the formation of PdH x and hydrogen induced lattice expansion regulating the conductivity of SPMs. This fine hydrogen sensor is promising to be applied to human health monitoring, environmental air detection and other integrated intelligent devices.We reported a fine H2 sensor based on single Pd microwires (SPMs) by femtosecond-laser-induced deposition of palladium nanoparticles (PdNPs), which exhibits excellent H2 sensing performance. The PdNPs with good dispersion were prepared by ultrasonic assisted one-step solution synthesis. The sensor has a wide detection range of 0.001-4.0% H2 sensing at room temperature. With the increase of the H2 concentration, the SPM sensor presents two sensing mechanisms, the formation of PdH x and hydrogen induced lattice expansion regulating the conductivity of SPMs. This fine hydrogen sensor is promising to be applied to human health monitoring, environmental air detection and other integrated intelligent devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2516-0230
2516-0230
DOI:10.1039/d2na00462c