Descriptive, Longitudinal Study Results Applied to Statistical Models to Assess the Impact of Early Microbiological Cultures on the Economic Burden of Treatment for Infected Diabetic Foot Ulcers at a Mexican Public Health Facility

Infection plays a critical role in health care and impacts the cost of the treatment of diabetic foot ulcers (DFU). To examine the cost reduction associated with the multidisciplinary treatment of infected DFU (IDFU) by obtaining early (ie, within 48 hours of admission) microbiological culture resul...

Full description

Saved in:
Bibliographic Details
Published inOstomy/wound management Vol. 62; no. 12; pp. 14 - 28
Main Authors Balderas-Peña, Luz-Ma-Adriana, Sat-Muñoz, Daniel, Ramírez-Conchas, Rosa-Emilia, Alvarado-Iñiguez, Moisés-Roberto, García-de-Alba-García, Javier-Eduardo, Cruz-Corona, Eduardo, Chávez-Hurtado, José-Luis, Chagollán-Ramírez, José-Martín
Format Journal Article
LanguageEnglish
Published United States HMP Communications 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Infection plays a critical role in health care and impacts the cost of the treatment of diabetic foot ulcers (DFU). To examine the cost reduction associated with the multidisciplinary treatment of infected DFU (IDFU) by obtaining early (ie, within 48 hours of admission) microbiological culture results, a descriptive, longitudinal study was conducted. Data were collected prospectively from patient medical charts of a cohort of 67 patients (mean age, 56.14 ± 12.3 years; mean duration of diabetes, 14.95 ± 8 years) with IDFU treated at a Mexican public health facility from January 1 to April 30, 2010. Information included demographic data (age, gender, marital status, time elapsed since first diagnosis of diabetes mellitus type 2 [DM2]), and the following clinical records: Wagner classification, bacterium type, antimicrobial resistance, length of hospital stay, and the antibiotic schedule utilized, as well as number and type of laboratory tests, medications, intravenous therapy, surgical and supportive treatment, type and number of specialists, and clinical outcome. Microcosting was used to calculate the unit cost of each medical treatment element. Using the Monte Carlo and Markov predictive simulation economical models, cost reduction associated with early identification of the specific microorganism through bacterial culture in IDFU was estimated. Based on the statistical results, differences between real and estimated costs when including early microbiological culture were identified and the number and type of most common species of infectious bacteria were detected. The total cost observed in the patient cohort was $502 438.04 USD, mean cost per patient was $7177.69 ± $5043.51 USD, and 72.75% of the total cost was associated with the hospital stay length. The cost of the entire treatment including antibiotics was $359 196.16 USD; based on the simulation of early microbiological culture, the model results showed cost could be reduced by 10% to 25% (in this study, the cost could be as low as $304 624.63 USD). The use of early microbiological cultures on IDFU to determine the appropriate antibiotic can reduce treatment costs by >30% if hospital stay is part of the consideration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:2640-5237
0889-5899
1943-2720
2640-5245