A novel composite of CdS nanorods growing on a polyaniline-Cd2+ particles surface with excellent formaldehyde gas sensing properties at low temperature

A novel composite, CdS nanorods growing on a polyaniline-Cd2+ particles surface (CdS/PANI) with a hexagonal wurtzite structure phase, was prepared using a hydrothermal synthesis method. Methods of XRD, SEM, and FTIR were used to analyze the structure and morphology of the compounds. SEM shows that C...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 8; no. 54; pp. 30747 - 30754
Main Authors Zhang, Ling, Li, Xifeng, Mu, Zonggang, Miao, Jing, Wang, Kun, Zhang, Rui, Chen, Shunquan
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 31.08.2018
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel composite, CdS nanorods growing on a polyaniline-Cd2+ particles surface (CdS/PANI) with a hexagonal wurtzite structure phase, was prepared using a hydrothermal synthesis method. Methods of XRD, SEM, and FTIR were used to analyze the structure and morphology of the compounds. SEM shows that CdS/PANI consists of sea urchin-like nanorods of about 200–500 nm in length and about 50 nm in diameter. Furthermore, the FTIR spectra show that some characteristic peaks of CdS/PANI are much weaker than those of PANI and the corresponding peaks shift to a higher wavenumber. In addition, the IR stretching frequency of the Cd–S bond for CdS/PANI moved from 630 cm−1 to 674 cm−1. In the gas sensing experiments, the CdS/PANI-based sensor showed an excellent response to low concentration formaldehyde gas in a wide temperature range of 80–140 °C. The highest response of CdS/PANI could reach about 4.8 to 5 ppm formaldehyde gas at 120 °C. The response and recovery times of the sensor based on CdS/PANI were about 25 s and 30 s to 10 ppm formaldehyde gas, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/c8ra05082a