Liver fibrosis assessment: MR and US elastography
Elastography has emerged as a preferred non-invasive imaging technique for the clinical assessment of liver fibrosis. Elastography methods provide liver stiffness measurement (LSM) as a surrogate quantitative biomarker for fibrosis burden in chronic liver disease (CLD). Elastography can be performed...
Saved in:
Published in | Abdominal imaging Vol. 47; no. 9; pp. 3037 - 3050 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Elastography has emerged as a preferred non-invasive imaging technique for the clinical assessment of liver fibrosis. Elastography methods provide liver stiffness measurement (LSM) as a surrogate quantitative biomarker for fibrosis burden in chronic liver disease (CLD). Elastography can be performed either with ultrasound or MRI. Currently available ultrasound-based methods include strain elastography, two-dimensional shear wave elastography (2D-SWE), point shear wave elastography (pSWE), and vibration-controlled transient elastography (VCTE). MR Elastography (MRE) is widely available as two-dimensional gradient echo MRE (2D-GRE-MRE) technique. US-based methods provide estimated Young’s modulus (eYM) and MRE provides magnitude of the complex shear modulus. MRE and ultrasound methods have proven to be accurate methods for detection of advanced liver fibrosis and cirrhosis. Other clinical applications of elastography include liver decompensation prediction, and differentiation of non-alcoholic steatohepatitis (NASH) from simple steatosis (SS). In this review, we briefly describe the different elastography methods, discuss current clinical applications, and provide an overview of advances in the field of liver elastography. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Arinc Ozturk, Michael C. Olson, Anthony Samir, and Sudhakar K. Venkatesh have contributed equally to this work. |
ISSN: | 2366-004X 2366-0058 2366-0058 |
DOI: | 10.1007/s00261-021-03269-4 |