Kinetic mechanism of mitochondrial NADH:ubiquinone oxidoreductase interaction with nucleotide substrates of the transhydrogenase reaction
The effects of Tinopals (cationic benzoxazoles) AMS-GX and 5BM-GX on NADH-oxidase, NADH:ferricyanide reductase, and NADH --> APAD+ transhydrogenase reactions and energy-linked NAD+ reduction by succinate, catalyzed by NADH:ubiquinone oxidoreductase (Complex I) in submitochondrial particles (SMP),...
Saved in:
Published in | Biochemistry (Moscow) Vol. 67; no. 12; pp. 1395 - 1404 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Springer Nature B.V
01.12.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The effects of Tinopals (cationic benzoxazoles) AMS-GX and 5BM-GX on NADH-oxidase, NADH:ferricyanide reductase, and NADH --> APAD+ transhydrogenase reactions and energy-linked NAD+ reduction by succinate, catalyzed by NADH:ubiquinone oxidoreductase (Complex I) in submitochondrial particles (SMP), were investigated. AMS-GX competes with NADH in NADH-oxidase and NADH:ferricyanide reductase reactions (K(i) = 1 micro M). 5BM-GX inhibits those reactions with mixed type with respect to NADH (K(i) = 5 micro M) mechanism. Neither compound affects reverse electron transfer from succinate to NAD+. The type of the Tinopals' effect on the NADH --> APAD+ transhydrogenase reaction, occurring with formation of a ternary complex, suggests the ordered binding of nucleotides by the enzyme during the reaction: AMS-GX and 5BM-GX inhibit this reaction uncompetitively just with respect to one of the substrates (APAD+ and NADH, correspondingly). The competition between 5BM-GX and APAD+ confirms that NADH is the first substrate bound by the enzyme. Direct and reverse electron transfer reactions demonstrate different specificity for NADH and NAD+ analogs: the nicotinamide part of the molecule is significant for reduced nucleotide binding. The data confirm the model suggesting that during NADH --> APAD+ reaction, occurring with ternary complex formation, reduced nucleotide interacts with the center participating in NADH oxidation, whereas oxidized nucleotide reacts with the center binding NAD+ in the reverse electron transfer reaction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-2979 1608-3040 |
DOI: | 10.1023/A:1021818312040 |