Validated Liquid Culture Monitoring System for Lifespan Extension of Caenorhabditis elegans through Genetic and Dietary Manipulations

Nutritional and genetic factors influence aging and life expectancy. The reduction of food intake without malnutrition, referred to caloric restriction (CR), has been shown to increase lifespan in a wide variety of species. The nematode Caenorhabditis elegans (C. elegans) is one of the principle mod...

Full description

Saved in:
Bibliographic Details
Published inAging and disease Vol. 4; no. 4; pp. 178 - 185
Main Authors Win, Myat Thu Thu, Yamamoto, Yasuhiko, Munesue, Seiichi, Han, Dong, Harada, Shin-Ichi, Yamamoto, Hiroshi
Format Journal Article
LanguageEnglish
Published United States JKL International LLC 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nutritional and genetic factors influence aging and life expectancy. The reduction of food intake without malnutrition, referred to caloric restriction (CR), has been shown to increase lifespan in a wide variety of species. The nematode Caenorhabditis elegans (C. elegans) is one of the principle models with which to study the biology of aging and search for anti-aging compounds. In this study, we validated and optimized a high-throughput liquid culture system to monitor C. elegans lifespan with minimized mechanical stress. We used alive and ultraviolet (UV)-killed Escherichia coli (E. coli) OP50 at 10(8) or 10(9) colony-forming units (cfu)/ml to feed Bristol N2 wild-type (WT) and mutant worms of a well-characterized insulin/insulin-like growth factor signaling (ILS) pathway: the insulin receptor homolog daf-2 (e1370), phosphatidylinositol 3-kinase age-1 (hx546), and transcriptional factor FOXO homolog daf-16 (mu86 and mgDf50). Compared with alive E. coli at 10(9) cfu/ml, supplementations of alive E. coli at 10(8) cfu/ml or UV-killed E. coli at 10(9) cfu/ml dramatically prolonged lifespan in WT and age-1 mutants, and to a lesser extent, in daf-2 and daf-16 mutants, suggesting that signaling pathways in CR and ILS do not overlap fully. Feeding 10(8) cfu/ml UV-killed E. coli, which led to maximally saturated longevity in WT and daf-2 mutant, can prolonged lifespan in age-1, but not daf-16, mutants. This approach will be useful for investigating the biology of aging, physiological responses and gene functions under CR conditions and also for screening pharmacologic compounds to extend lifespan or affect other biologic processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2152-5250
2152-5250