High quality DNA obtained with an automated DNA extraction method with 70+ year old formalin-fixed celloidin-embedded (FFCE) blocks from the indiana medical history museum

DNA and RNA have been used as markers of tissue quality and integrity throughout the last few decades. In this research study, genomic quality DNA of kidney, liver, heart, lung, spleen, and brain were analyzed in tissues from post-mortem patients and surgical cancer cases spanning the past century....

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of translational research Vol. 4; no. 2; pp. 198 - 205
Main Authors Niland, Erin E, McGuire, Audrey, Cox, Mary H, Sandusky, George E
Format Journal Article
LanguageEnglish
Published United States e-Century Publishing Corporation 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:DNA and RNA have been used as markers of tissue quality and integrity throughout the last few decades. In this research study, genomic quality DNA of kidney, liver, heart, lung, spleen, and brain were analyzed in tissues from post-mortem patients and surgical cancer cases spanning the past century. DNA extraction was performed on over 180 samples from: 70+ year old formalin-fixed celloidin-embedded (FFCE) tissues, formalin-fixed paraffin-embedded (FFPE) tissue samples from surgical cases and post-mortem cases from the 1970's, 1980's, 1990's, and 2000's, tissues fixed in 10% neutral buffered formalin/stored in 70% ethanol from the 1990's, 70+ year old tissues fixed in unbuffered formalin of various concentrations, and fresh tissue as a control. To extract DNA from FFCE samples and ethanol-soaked samples, a modified standard operating procedure was used in which all tissues were homogenized, digested with a proteinase K solution for a long period of time (24-48 hours), and DNA was extracted using the Autogen Flexstar automated extraction machine. To extract DNA from FFPE, all tissues were soaked in xylene to remove the paraffin from the tissue prior to digestion, and FFPE tissues were not homogenized. The results were as follows: celloidin-embedded and paraffin-embedded tissues yielded the highest DNA concentration and greatest DNA quality, while the formalin in various concentrations, and long term formalin/ethanol-stored tissue yielded both the lowest DNA concentration and quality of the tissues tested. The average DNA yield for the various fixatives was: 367.77 μg/ mL FFCE, 590.7 μg/mL FFPE, 53.74 μg/mL formalin-fixed/70% ethanol-stored and 33.2 μg/mL unbuffered formalin tissues. The average OD readings for FFCE, FFPE, formalin-fixed/70% ethanol-stored tissues, and tissues fixed in unbuffered formalin were 1.86, 1.87, 1.43, and 1.48 respectively. The results show that usable DNA can be extracted from tissue fixed in formalin and embedded in celloidin or paraffin from the early 1900's to present, and may be amplified through PCR and used for clinical and experimental studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1943-8141