Amplified Interfacial Effect in an Atomically Dispersed RuOx‐on‐Pd 2D Inverse Nanocatalyst for High‐Performance Oxygen Reduction

Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 29; pp. 16093 - 16100
Main Authors Lyu, Zixi, Zhang, Xia‐Guang, Wang, Yucheng, Liu, Kai, Qiu, Chunyu, Liao, Xinyan, Yang, Weihua, Xie, Zhaoxiong, Xie, Shuifen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 12.07.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202104013

Cover

Loading…
Abstract Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength. An atomically dispersed RuOx‐on‐Pd ultrathin 2D inverse nanocatalyst with amplified oxide/metal interface effects may serve as an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries.
AbstractList Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength. An atomically dispersed RuOx‐on‐Pd ultrathin 2D inverse nanocatalyst with amplified oxide/metal interface effects may serve as an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries.
Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx -on-Pd nanosheets, by in situ creating atomically dispersed RuOx /Pd interfaces densely on ultrathin Pd nanosheets via a one-pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0- and 22.4-fold enhancement in mass activity compared to the state-of-the-art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt-alternative cathode electrocatalyst for fuel cells and metal-air batteries. Density functional theory calculations validate that the RuOx /Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O-O bond cleavage. Meanwhile, the d-band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx -on-Pd nanosheets, by in situ creating atomically dispersed RuOx /Pd interfaces densely on ultrathin Pd nanosheets via a one-pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0- and 22.4-fold enhancement in mass activity compared to the state-of-the-art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt-alternative cathode electrocatalyst for fuel cells and metal-air batteries. Density functional theory calculations validate that the RuOx /Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O-O bond cleavage. Meanwhile, the d-band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.
Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.
Author Wang, Yucheng
Xie, Shuifen
Liao, Xinyan
Lyu, Zixi
Qiu, Chunyu
Xie, Zhaoxiong
Zhang, Xia‐Guang
Yang, Weihua
Liu, Kai
Author_xml – sequence: 1
  givenname: Zixi
  surname: Lyu
  fullname: Lyu, Zixi
  organization: Huaqiao University
– sequence: 2
  givenname: Xia‐Guang
  surname: Zhang
  fullname: Zhang, Xia‐Guang
  organization: Henan Normal University
– sequence: 3
  givenname: Yucheng
  surname: Wang
  fullname: Wang, Yucheng
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 4
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
  organization: Huaqiao University
– sequence: 5
  givenname: Chunyu
  surname: Qiu
  fullname: Qiu, Chunyu
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 6
  givenname: Xinyan
  surname: Liao
  fullname: Liao, Xinyan
  organization: Huaqiao University
– sequence: 7
  givenname: Weihua
  surname: Yang
  fullname: Yang, Weihua
  organization: Huaqiao University
– sequence: 8
  givenname: Zhaoxiong
  surname: Xie
  fullname: Xie, Zhaoxiong
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 9
  givenname: Shuifen
  orcidid: 0000-0003-4283-6626
  surname: Xie
  fullname: Xie, Shuifen
  email: sfxie@hqu.edu.cn
  organization: Huaqiao University
BookMark eNpd0T1LxTAUBuAgCn6uzgEXl2o-23S86FUviFdE55KbJhpJk9q0ers5Ofsb_SWmKA4uOTmcJ4fAuws2ffAagEOMTjBC5FR6q08IIhgxhOkG2MGc4IwWBd1Md0ZpVgiOt8FujM_JC4HyHfAxa1pnjdU1XPhed0YqKx2cG6NVD62H0sNZHxqrpHMjPLex1V1M-m5Yrr_eP4NPx20NyXl6_zqN4I30QcleujH20IQOXtnHp0ml7aFrpFcaLtfjo_bwTteD6m3w-2DLSBf1wW_dAw8X8_uzq-x6ebk4m11nLclzmilOc0JoUSqjVisqCslwrQQzyiDEheG6LjEpEatLwRhe8VyuapwzjUyBakzpHjj-2dt24WXQsa8aG5V2TnodhlgRjnNBS87KRI_-0ecwdD79LikmKCsZn1T5o96s02PVdraR3VhhVE2ZVFMm1V8m1exmMf_r6DeNRIds
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202104013
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 16100
ExternalDocumentID ANIE202104013
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21771067; 22002036
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2017J06005
– fundername: Program for New Century Excellent Talents in Fujian Province University
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p2663-c53622379cfcbb387a41dc84fcf0058f5ed912904d98441b56abd164e0f70d133
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:02:18 EDT 2025
Fri Jul 25 11:38:45 EDT 2025
Wed Jan 22 16:30:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2663-c53622379cfcbb387a41dc84fcf0058f5ed912904d98441b56abd164e0f70d133
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4283-6626
PQID 2548349459
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2516839549
proquest_journals_2548349459
wiley_primary_10_1002_anie_202104013_ANIE202104013
PublicationCentury 2000
PublicationDate July 12, 2021
PublicationDateYYYYMMDD 2021-07-12
PublicationDate_xml – month: 07
  year: 2021
  text: July 12, 2021
  day: 12
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2018; 28
2012; 486
2013; 1
2017; 3
2010; 328
2020; 142
2020; 120
2013; 46
2019; 19
2018; 808
2013; 341
2020; 11
2009; 131
2011; 3
2004; 108
2017; 355
2011; 6
2014; 136
2011; 133
2014; 43
2017; 139
2018; 9
2020; 6
2016; 7
2012; 2
2018; 2
2016 2016; 55 128
2011; 108
2007; 315
2015; 115
2007; 111
2017; 10
2015; 44
2007 2007; 46 119
2021 2021; 60 133
2014; 14
2016; 116
2020; 23
2009; 1
2007; 318
2014; 147
2016; 9
2019; 574
2012; 41
2014; 344
References_xml – volume: 133
  start-page: 15946
  year: 2011
  end-page: 15949
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 17812
  year: 2020
  end-page: 17827
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 552
  year: 2009
  end-page: 556
  publication-title: Nat. Chem.
– volume: 131
  start-page: 602
  year: 2009
  end-page: 608
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 6772
  year: 2007
  end-page: 6775
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 3269
  year: 2020
  publication-title: Nat. Commun.
– volume: 486
  start-page: 43
  year: 2012
  end-page: 51
  publication-title: Nature
– volume: 116
  start-page: 3594
  year: 2016
  end-page: 3657
  publication-title: Chem. Rev.
– volume: 6
  start-page: 28
  year: 2011
  end-page: 32
  publication-title: Nat. Nanotechnol.
– volume: 43
  start-page: 7870
  year: 2014
  end-page: 7886
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 1692
  year: 2013
  end-page: 1701
  publication-title: Acc. Chem. Res.
– volume: 574
  start-page: 81
  year: 2019
  end-page: 85
  publication-title: Nature
– volume: 3
  start-page: 372
  year: 2011
  end-page: 376
  publication-title: Nat. Chem.
– volume: 328
  start-page: 1141
  year: 2010
  end-page: 1144
  publication-title: Science
– volume: 120
  start-page: 12217
  year: 2020
  end-page: 12314
  publication-title: Chem. Rev.
– volume: 139
  start-page: 2122
  year: 2017
  end-page: 2131
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 623
  year: 2020
  end-page: 682
  publication-title: Chem. Rev.
– volume: 9
  start-page: 2418
  year: 2016
  end-page: 2432
  publication-title: Energy Environ. Sci.
– volume: 60 133
  start-page: 12027 12134
  year: 2021 2021
  end-page: 12031 12138
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 318
  start-page: 1757
  year: 2007
  end-page: 1760
  publication-title: Science
– volume: 355
  year: 2017
  publication-title: Science
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  publication-title: J. Phys. Chem. B
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 46 119
  start-page: 2862 2920
  year: 2007 2007
  end-page: 2864 2922
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3702
  year: 2018
  publication-title: Nat. Commun.
– volume: 344
  start-page: 495
  year: 2014
  end-page: 499
  publication-title: Science
– volume: 108
  start-page: 937
  year: 2011
  end-page: 943
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: 2168
  year: 2015
  end-page: 2201
  publication-title: Chem. Soc. Rev.
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  publication-title: Science
– volume: 133
  start-page: 3444
  year: 2011
  end-page: 3451
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2514
  year: 2018
  end-page: 2516
  publication-title: Joule
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 808
  start-page: 464
  year: 2018
  end-page: 473
  publication-title: J. Electroanal. Chem.
– volume: 147
  start-page: 369
  year: 2014
  end-page: 376
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 402
  year: 2017
  end-page: 434
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 3570
  year: 2014
  end-page: 3576
  publication-title: Nano Lett.
– volume: 142
  start-page: 169
  year: 2020
  end-page: 184
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 9030 9176
  year: 2016 2016
  end-page: 9035 9181
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 2627
  year: 2016
  end-page: 2639
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 2039
  year: 2013
  end-page: 2049
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 707
  year: 2011
  end-page: 713
  publication-title: Nat. Chem.
– volume: 19
  start-page: 1336
  year: 2019
  end-page: 1342
  publication-title: Nano Lett.
– volume: 136
  start-page: 11687
  year: 2014
  end-page: 11697
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 795
  year: 2012
  end-page: 806
  publication-title: ACS Catal.
– volume: 341
  start-page: 771
  year: 2013
  end-page: 773
  publication-title: Science
– volume: 115
  start-page: 11999
  year: 2015
  end-page: 12044
  publication-title: Chem. Rev.
– volume: 41
  start-page: 2172
  year: 2012
  end-page: 2192
  publication-title: Chem. Soc. Rev.
– volume: 315
  start-page: 493
  year: 2007
  end-page: 497
  publication-title: Science
SSID ssj0028806
Score 2.5813012
Snippet Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a...
Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 16093
SubjectTerms Catalysts
Chemical reduction
Density functional theory
Dispersion
Electrocatalysts
electronic modulation
Fabrication
Fuel cells
Interfaces
Nanocatalysis
Nanostructure
non-platinum electrocatalysts
Oxygen
oxygen reduction reaction
Oxygen reduction reactions
Palladium
Platinum
RuOx/Pd interface
Title Amplified Interfacial Effect in an Atomically Dispersed RuOx‐on‐Pd 2D Inverse Nanocatalyst for High‐Performance Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202104013
https://www.proquest.com/docview/2548349459
https://www.proquest.com/docview/2516839549
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YLnrxbUTRrInXQrt97pHwCHoAQyTh1uy2uwnRtERKAp48efY3-kucaaGAR700bXaatJ2ZnUdnviHkHiycx6IYNI1Lz3C45RpcmcpwY1f7SkVg9fMC2b7XGzmPY3e81cVf4EOUCTfUjHy_RgUXctbYgIZiBzbEdxCyYIgAmzAWbKFXNCzxoxgIZ9FeZNsGTqFfozaarLF7-45_ue2l5mame0TE-gGL6pKX-jyT9ej9F3bjf97gmByufFDaLITmhOyp5JTst9aj387IZxPrzDV4pzTPGGqBiXVaIB3TSUJFQptZmiMNvC5pe4Jw4zOgHs4Hi--PrzSBw1NMWZsijgcsUdjF0zxVtJxlFBxligUmSLVpXKCDxRLEmQ4RTRbl5ZyMup3nVs9YDWwwpmDnbSNywRwy2-eRjqS0A184VhwFjo40ji_Uroo55r2cmAfghknXEzKGeE2Z2jdjiJYvSCVJE3VJKJdKMV8Epg6UI1QgJbdNIOYeF77FdJXU1gwLV1o3CyHYDRBux-VVclcuw7fDnyAiUekcaSwP5A_C4iphOXfCaYHrERYIzixEvoQlX8Jm_6FTXl395aZrcoDnmBK2WI1Usre5ugFfJpO3ubz-ANwX7_s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ74OOjFt7E-18QrFZbnHhurqa9qmjbxRljYTYwGjKWJ9eTJs7_RX-IMFLQe9UICOyTAzOw8mPkG4AgtnMfjBDVNSM9whOUaQpnKcBNX-0rFaPWLAtmu1xk4F3duVU1IvTAlPkSdcCPNKPZrUnBKSB9_o4ZSCzYGeBizUIwwC_M01pt0s92rEaQ4imfZYGTbBs2hr3AbTX48ff-Uh_nTTy0MzdkyyOoRy_qSh-Yol8349Rd647_eYQWWJm4oa5VyswozKl2DhZNq-ts6vLeo1Fyjg8qKpKGOKLfOSrBjdp-yKGWtPCvABh7HrH1PiONDpO6Nbl4-3z6yFA-3CeNtRlAeuMRwI8-KbNF4mDP0lRnVmBDVd-8Cu3kZo0SzHgHKkshswODstH_SMSYzG4wnNPW2EbtoEbnti1jHUtqBHzlWEgeOjjVNMNSuSgSlvpxEBOiJSdeLZIIhmzK1byYYMG_CXJqlaguYkEpxPwpMHSgnUoGUwjaRWHgi8i2uG7BbcSycKN4wxHg3IMQdVzTgsF7Gb0f_QaJUZSOisTwUQYyMG8AL9oRPJbRHWII485D4EtZ8CVvd89P6bPsvNx3AQqd_fRVenXcvd2CRrlOG2OK7MJc_j9Qeuja53C-E9wvRJPQU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VVAIutLxEKG23EleDvX7uMSKJoEUBRUXiZu16d6WolR0RR0o4ceLMb-SXMGMnJvRIL5bsHUu2Z2bn4ZlvAI7RwkU806hpQkVOILzQEcY1TqhDGxuTodWvCmQH0flN8PM2vF3p4q_xIZqEG2lGtV-Tgo-1PX0FDaUObIzvMGShEGENPgaRm1D41R02AFIcpbPuL_J9h8bQL2EbXX769v43Duaqm1rZmf4nkMsnrMtL_pxMS3WS3f8D3vg_r_AZthZOKOvUUrMNH0y-Axtny9lvu_DYoUJzi-4pq1KGVlJmndVQx2yUM5mzTllUUAN_56w7IrzxCVIPp1ez54enIsfDtWa8ywjIA5cYbuNFlSuaT0qGnjKjChOieu1cYFezOcozGxKcLAnMHtz0e7_Pzp3FxAZnjIbed7IQ7SH3Y5HZTCk_iWXg6SwJbGZpfqENjRaU-Aq0SNAPU2EklcaAzbg2djWGy_vQyovcHAATyhgey8S1iQmkSZQSvovEIhIy9rhtw9GSYelC7SYpRrsJ4e2Eog0_mmX8dvQXROammBKNF6EAYlzcBl5xJx3XwB5pDeHMU-JL2vAl7Qwues3Z4Xtu-g7r191-enkx-PUFNukypYc9fgSt8m5qvqJfU6pvlei-AB7K8sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplified+Interfacial+Effect+in+an+Atomically+Dispersed+RuOx%E2%80%90on%E2%80%90Pd+2D+Inverse+Nanocatalyst+for+High%E2%80%90Performance+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lyu%2C+Zixi&rft.au=Zhang%2C+Xia%E2%80%90Guang&rft.au=Wang%2C+Yucheng&rft.au=Liu%2C+Kai&rft.date=2021-07-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=29&rft.spage=16093&rft.epage=16100&rft_id=info:doi/10.1002%2Fanie.202104013&rft.externalDBID=10.1002%252Fanie.202104013&rft.externalDocID=ANIE202104013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon