Amplified Interfacial Effect in an Atomically Dispersed RuOx‐on‐Pd 2D Inverse Nanocatalyst for High‐Performance Oxygen Reduction
Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 29; pp. 16093 - 16100 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
12.07.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202104013 |
Cover
Loading…
Abstract | Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.
An atomically dispersed RuOx‐on‐Pd ultrathin 2D inverse nanocatalyst with amplified oxide/metal interface effects may serve as an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. |
---|---|
AbstractList | Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.
An atomically dispersed RuOx‐on‐Pd ultrathin 2D inverse nanocatalyst with amplified oxide/metal interface effects may serve as an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx -on-Pd nanosheets, by in situ creating atomically dispersed RuOx /Pd interfaces densely on ultrathin Pd nanosheets via a one-pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0- and 22.4-fold enhancement in mass activity compared to the state-of-the-art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt-alternative cathode electrocatalyst for fuel cells and metal-air batteries. Density functional theory calculations validate that the RuOx /Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O-O bond cleavage. Meanwhile, the d-band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx -on-Pd nanosheets, by in situ creating atomically dispersed RuOx /Pd interfaces densely on ultrathin Pd nanosheets via a one-pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0- and 22.4-fold enhancement in mass activity compared to the state-of-the-art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt-alternative cathode electrocatalyst for fuel cells and metal-air batteries. Density functional theory calculations validate that the RuOx /Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O-O bond cleavage. Meanwhile, the d-band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength. Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength. |
Author | Wang, Yucheng Xie, Shuifen Liao, Xinyan Lyu, Zixi Qiu, Chunyu Xie, Zhaoxiong Zhang, Xia‐Guang Yang, Weihua Liu, Kai |
Author_xml | – sequence: 1 givenname: Zixi surname: Lyu fullname: Lyu, Zixi organization: Huaqiao University – sequence: 2 givenname: Xia‐Guang surname: Zhang fullname: Zhang, Xia‐Guang organization: Henan Normal University – sequence: 3 givenname: Yucheng surname: Wang fullname: Wang, Yucheng organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 4 givenname: Kai surname: Liu fullname: Liu, Kai organization: Huaqiao University – sequence: 5 givenname: Chunyu surname: Qiu fullname: Qiu, Chunyu organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 6 givenname: Xinyan surname: Liao fullname: Liao, Xinyan organization: Huaqiao University – sequence: 7 givenname: Weihua surname: Yang fullname: Yang, Weihua organization: Huaqiao University – sequence: 8 givenname: Zhaoxiong surname: Xie fullname: Xie, Zhaoxiong organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 9 givenname: Shuifen orcidid: 0000-0003-4283-6626 surname: Xie fullname: Xie, Shuifen email: sfxie@hqu.edu.cn organization: Huaqiao University |
BookMark | eNpd0T1LxTAUBuAgCn6uzgEXl2o-23S86FUviFdE55KbJhpJk9q0ers5Ofsb_SWmKA4uOTmcJ4fAuws2ffAagEOMTjBC5FR6q08IIhgxhOkG2MGc4IwWBd1Md0ZpVgiOt8FujM_JC4HyHfAxa1pnjdU1XPhed0YqKx2cG6NVD62H0sNZHxqrpHMjPLex1V1M-m5Yrr_eP4NPx20NyXl6_zqN4I30QcleujH20IQOXtnHp0ml7aFrpFcaLtfjo_bwTteD6m3w-2DLSBf1wW_dAw8X8_uzq-x6ebk4m11nLclzmilOc0JoUSqjVisqCslwrQQzyiDEheG6LjEpEatLwRhe8VyuapwzjUyBakzpHjj-2dt24WXQsa8aG5V2TnodhlgRjnNBS87KRI_-0ecwdD79LikmKCsZn1T5o96s02PVdraR3VhhVE2ZVFMm1V8m1exmMf_r6DeNRIds |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202104013 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 16100 |
ExternalDocumentID | ANIE202104013 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21771067; 22002036 – fundername: Natural Science Foundation of Fujian Province funderid: 2017J06005 – fundername: Program for New Century Excellent Talents in Fujian Province University |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-p2663-c53622379cfcbb387a41dc84fcf0058f5ed912904d98441b56abd164e0f70d133 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:02:18 EDT 2025 Fri Jul 25 11:38:45 EDT 2025 Wed Jan 22 16:30:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2663-c53622379cfcbb387a41dc84fcf0058f5ed912904d98441b56abd164e0f70d133 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4283-6626 |
PQID | 2548349459 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2516839549 proquest_journals_2548349459 wiley_primary_10_1002_anie_202104013_ANIE202104013 |
PublicationCentury | 2000 |
PublicationDate | July 12, 2021 |
PublicationDateYYYYMMDD | 2021-07-12 |
PublicationDate_xml | – month: 07 year: 2021 text: July 12, 2021 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2018; 28 2012; 486 2013; 1 2017; 3 2010; 328 2020; 142 2020; 120 2013; 46 2019; 19 2018; 808 2013; 341 2020; 11 2009; 131 2011; 3 2004; 108 2017; 355 2011; 6 2014; 136 2011; 133 2014; 43 2017; 139 2018; 9 2020; 6 2016; 7 2012; 2 2018; 2 2016 2016; 55 128 2011; 108 2007; 315 2015; 115 2007; 111 2017; 10 2015; 44 2007 2007; 46 119 2021 2021; 60 133 2014; 14 2016; 116 2020; 23 2009; 1 2007; 318 2014; 147 2016; 9 2019; 574 2012; 41 2014; 344 |
References_xml | – volume: 133 start-page: 15946 year: 2011 end-page: 15949 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 17812 year: 2020 end-page: 17827 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 552 year: 2009 end-page: 556 publication-title: Nat. Chem. – volume: 131 start-page: 602 year: 2009 end-page: 608 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 6772 year: 2007 end-page: 6775 publication-title: J. Phys. Chem. B – volume: 11 start-page: 3269 year: 2020 publication-title: Nat. Commun. – volume: 486 start-page: 43 year: 2012 end-page: 51 publication-title: Nature – volume: 116 start-page: 3594 year: 2016 end-page: 3657 publication-title: Chem. Rev. – volume: 6 start-page: 28 year: 2011 end-page: 32 publication-title: Nat. Nanotechnol. – volume: 43 start-page: 7870 year: 2014 end-page: 7886 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 1692 year: 2013 end-page: 1701 publication-title: Acc. Chem. Res. – volume: 574 start-page: 81 year: 2019 end-page: 85 publication-title: Nature – volume: 3 start-page: 372 year: 2011 end-page: 376 publication-title: Nat. Chem. – volume: 328 start-page: 1141 year: 2010 end-page: 1144 publication-title: Science – volume: 120 start-page: 12217 year: 2020 end-page: 12314 publication-title: Chem. Rev. – volume: 139 start-page: 2122 year: 2017 end-page: 2131 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 623 year: 2020 end-page: 682 publication-title: Chem. Rev. – volume: 9 start-page: 2418 year: 2016 end-page: 2432 publication-title: Energy Environ. Sci. – volume: 60 133 start-page: 12027 12134 year: 2021 2021 end-page: 12031 12138 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 318 start-page: 1757 year: 2007 end-page: 1760 publication-title: Science – volume: 355 year: 2017 publication-title: Science – volume: 108 start-page: 17886 year: 2004 end-page: 17892 publication-title: J. Phys. Chem. B – volume: 23 year: 2020 publication-title: iScience – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 46 119 start-page: 2862 2920 year: 2007 2007 end-page: 2864 2922 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3702 year: 2018 publication-title: Nat. Commun. – volume: 344 start-page: 495 year: 2014 end-page: 499 publication-title: Science – volume: 108 start-page: 937 year: 2011 end-page: 943 publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 2168 year: 2015 end-page: 2201 publication-title: Chem. Soc. Rev. – volume: 334 start-page: 1256 year: 2011 end-page: 1260 publication-title: Science – volume: 133 start-page: 3444 year: 2011 end-page: 3451 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2514 year: 2018 end-page: 2516 publication-title: Joule – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 808 start-page: 464 year: 2018 end-page: 473 publication-title: J. Electroanal. Chem. – volume: 147 start-page: 369 year: 2014 end-page: 376 publication-title: Appl. Catal. B – volume: 10 start-page: 402 year: 2017 end-page: 434 publication-title: Energy Environ. Sci. – volume: 14 start-page: 3570 year: 2014 end-page: 3576 publication-title: Nano Lett. – volume: 142 start-page: 169 year: 2020 end-page: 184 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 9030 9176 year: 2016 2016 end-page: 9035 9181 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 2627 year: 2016 end-page: 2639 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 2039 year: 2013 end-page: 2049 publication-title: J. Mater. Chem. A – volume: 3 start-page: 707 year: 2011 end-page: 713 publication-title: Nat. Chem. – volume: 19 start-page: 1336 year: 2019 end-page: 1342 publication-title: Nano Lett. – volume: 136 start-page: 11687 year: 2014 end-page: 11697 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 795 year: 2012 end-page: 806 publication-title: ACS Catal. – volume: 341 start-page: 771 year: 2013 end-page: 773 publication-title: Science – volume: 115 start-page: 11999 year: 2015 end-page: 12044 publication-title: Chem. Rev. – volume: 41 start-page: 2172 year: 2012 end-page: 2192 publication-title: Chem. Soc. Rev. – volume: 315 start-page: 493 year: 2007 end-page: 497 publication-title: Science |
SSID | ssj0028806 |
Score | 2.5813012 |
Snippet | Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a... Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 16093 |
SubjectTerms | Catalysts Chemical reduction Density functional theory Dispersion Electrocatalysts electronic modulation Fabrication Fuel cells Interfaces Nanocatalysis Nanostructure non-platinum electrocatalysts Oxygen oxygen reduction reaction Oxygen reduction reactions Palladium Platinum RuOx/Pd interface |
Title | Amplified Interfacial Effect in an Atomically Dispersed RuOx‐on‐Pd 2D Inverse Nanocatalyst for High‐Performance Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202104013 https://www.proquest.com/docview/2548349459 https://www.proquest.com/docview/2516839549 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YLnrxbUTRrInXQrt97pHwCHoAQyTh1uy2uwnRtERKAp48efY3-kucaaGAR700bXaatJ2ZnUdnviHkHiycx6IYNI1Lz3C45RpcmcpwY1f7SkVg9fMC2b7XGzmPY3e81cVf4EOUCTfUjHy_RgUXctbYgIZiBzbEdxCyYIgAmzAWbKFXNCzxoxgIZ9FeZNsGTqFfozaarLF7-45_ue2l5mame0TE-gGL6pKX-jyT9ej9F3bjf97gmByufFDaLITmhOyp5JTst9aj387IZxPrzDV4pzTPGGqBiXVaIB3TSUJFQptZmiMNvC5pe4Jw4zOgHs4Hi--PrzSBw1NMWZsijgcsUdjF0zxVtJxlFBxligUmSLVpXKCDxRLEmQ4RTRbl5ZyMup3nVs9YDWwwpmDnbSNywRwy2-eRjqS0A184VhwFjo40ji_Uroo55r2cmAfghknXEzKGeE2Z2jdjiJYvSCVJE3VJKJdKMV8Epg6UI1QgJbdNIOYeF77FdJXU1gwLV1o3CyHYDRBux-VVclcuw7fDnyAiUekcaSwP5A_C4iphOXfCaYHrERYIzixEvoQlX8Jm_6FTXl395aZrcoDnmBK2WI1Usre5ugFfJpO3ubz-ANwX7_s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ74OOjFt7E-18QrFZbnHhurqa9qmjbxRljYTYwGjKWJ9eTJs7_RX-IMFLQe9UICOyTAzOw8mPkG4AgtnMfjBDVNSM9whOUaQpnKcBNX-0rFaPWLAtmu1xk4F3duVU1IvTAlPkSdcCPNKPZrUnBKSB9_o4ZSCzYGeBizUIwwC_M01pt0s92rEaQ4imfZYGTbBs2hr3AbTX48ff-Uh_nTTy0MzdkyyOoRy_qSh-Yol8349Rd647_eYQWWJm4oa5VyswozKl2DhZNq-ts6vLeo1Fyjg8qKpKGOKLfOSrBjdp-yKGWtPCvABh7HrH1PiONDpO6Nbl4-3z6yFA-3CeNtRlAeuMRwI8-KbNF4mDP0lRnVmBDVd-8Cu3kZo0SzHgHKkshswODstH_SMSYzG4wnNPW2EbtoEbnti1jHUtqBHzlWEgeOjjVNMNSuSgSlvpxEBOiJSdeLZIIhmzK1byYYMG_CXJqlaguYkEpxPwpMHSgnUoGUwjaRWHgi8i2uG7BbcSycKN4wxHg3IMQdVzTgsF7Gb0f_QaJUZSOisTwUQYyMG8AL9oRPJbRHWII485D4EtZ8CVvd89P6bPsvNx3AQqd_fRVenXcvd2CRrlOG2OK7MJc_j9Qeuja53C-E9wvRJPQU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VVAIutLxEKG23EleDvX7uMSKJoEUBRUXiZu16d6WolR0RR0o4ceLMb-SXMGMnJvRIL5bsHUu2Z2bn4ZlvAI7RwkU806hpQkVOILzQEcY1TqhDGxuTodWvCmQH0flN8PM2vF3p4q_xIZqEG2lGtV-Tgo-1PX0FDaUObIzvMGShEGENPgaRm1D41R02AFIcpbPuL_J9h8bQL2EbXX769v43Duaqm1rZmf4nkMsnrMtL_pxMS3WS3f8D3vg_r_AZthZOKOvUUrMNH0y-Axtny9lvu_DYoUJzi-4pq1KGVlJmndVQx2yUM5mzTllUUAN_56w7IrzxCVIPp1ez54enIsfDtWa8ywjIA5cYbuNFlSuaT0qGnjKjChOieu1cYFezOcozGxKcLAnMHtz0e7_Pzp3FxAZnjIbed7IQ7SH3Y5HZTCk_iWXg6SwJbGZpfqENjRaU-Aq0SNAPU2EklcaAzbg2djWGy_vQyovcHAATyhgey8S1iQmkSZQSvovEIhIy9rhtw9GSYelC7SYpRrsJ4e2Eog0_mmX8dvQXROammBKNF6EAYlzcBl5xJx3XwB5pDeHMU-JL2vAl7Qwues3Z4Xtu-g7r191-enkx-PUFNukypYc9fgSt8m5qvqJfU6pvlei-AB7K8sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplified+Interfacial+Effect+in+an+Atomically+Dispersed+RuOx%E2%80%90on%E2%80%90Pd+2D+Inverse+Nanocatalyst+for+High%E2%80%90Performance+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lyu%2C+Zixi&rft.au=Zhang%2C+Xia%E2%80%90Guang&rft.au=Wang%2C+Yucheng&rft.au=Liu%2C+Kai&rft.date=2021-07-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=29&rft.spage=16093&rft.epage=16100&rft_id=info:doi/10.1002%2Fanie.202104013&rft.externalDBID=10.1002%252Fanie.202104013&rft.externalDocID=ANIE202104013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |