Amplified Interfacial Effect in an Atomically Dispersed RuOx‐on‐Pd 2D Inverse Nanocatalyst for High‐Performance Oxygen Reduction

Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 29; pp. 16093 - 16100
Main Authors Lyu, Zixi, Zhang, Xia‐Guang, Wang, Yucheng, Liu, Kai, Qiu, Chunyu, Liao, Xinyan, Yang, Weihua, Xie, Zhaoxiong, Xie, Shuifen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 12.07.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength. An atomically dispersed RuOx‐on‐Pd ultrathin 2D inverse nanocatalyst with amplified oxide/metal interface effects may serve as an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202104013