Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate-based TiO2 hydrogel nanocomposite
Hydrogel nanocomposites were synthesized by solution polymerization of acrylic acid in the presence of sodium alginate biopolymer and TiO2 nanoparticle. TiO2 nanoparticle and N,N-methylene-bis-acrylamide was used as an inorganic and organic crosslinker, respectively. The structure and morphology of...
Saved in:
Published in | Adsorption science & technology Vol. 36; no. 1-2; pp. 458 - 477 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.02.2018
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hydrogel nanocomposites were synthesized by solution polymerization of acrylic acid in the presence of sodium alginate biopolymer and TiO2 nanoparticle. TiO2 nanoparticle and N,N-methylene-bis-acrylamide was used as an inorganic and organic crosslinker, respectively. The structure and morphology of the nanocomposites were investigated using X-Ray Diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) and thermogravimetric analysis techniques. The nanocomposites hydrogel was used for the adsorption of methyl violet dye from water. The influence of TiO2 nanoparticle, sodium alginate content and grafting on adsorption were studied. The results showed that a pseudo-second-order adsorption kinetic was predominant in the adsorption of methyl violet onto the nanocomposite hydrogel. The experimental equilibrated adsorption capacity of the nanocomposite hydrogel agrees with Langmuir isotherm. Maximum adsorption capacity of 1156.61 mg g−1 and adsorption efficiency of 99.6% towards methyl violet were obtained for the hydrogel nanocomposite. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0263-6174 2048-4038 |
DOI: | 10.1177/0263617417700636 |