Single neuron morphology in vivo with confined primed conversion

Unraveling the structural organization of neurons can provide fundamental insights into brain function. However, visualizing neurite morphology in vivo remains difficult due to the high density and complexity of neural packing in the nervous system. Detailed analysis of neural morphology requires di...

Full description

Saved in:
Bibliographic Details
Published inMethods in cell biology Vol. 133; pp. 125 - 138
Main Authors Mohr, M A, Pantazis, P
Format Journal Article
LanguageEnglish
Published United States 2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Unraveling the structural organization of neurons can provide fundamental insights into brain function. However, visualizing neurite morphology in vivo remains difficult due to the high density and complexity of neural packing in the nervous system. Detailed analysis of neural morphology requires distinction of closely neighboring, highly intricate cellular structures such as neurites with high contrast. Green-to-red photoconvertible fluorescent proteins have become powerful tools to optically highlight molecular and cellular structures for developmental and cell biological studies. Yet, selective labeling of single cells of interest in vivo has been precluded due to inefficient photoconversion when using high intensity, pulsed, near-infrared laser sources that are commonly applied for achieving axially confined two-photon (2P) fluorescence excitation. Here we describe a novel optical mechanism, "confined primed conversion," which employs continuous dual-wave illumination to achieve confined green-to-red photoconversion of single cells in live zebrafish embryos. Confined primed conversion exhibits wide applicability and this chapter specifically elaborates on employing this imaging modality to analyze neural morphology of optically targeted single neurons in the developing zebrafish brain.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0091-679X
DOI:10.1016/bs.mcb.2015.12.005