Aligning Multiple Protein Sequences by Hybrid Clonal Selection Algorithm with Insert-Remove-Gaps and BlockShuffling Operators
Multiple sequence alignment (MSA) is one of the most important tasks in biological sequence analysis. This paper will primarily focus on on protein alignments, but most of the discussion and methodology also applies to DNA alignments. A novel hybrid clonal selection algorihm, called an aligner, is p...
Saved in:
Published in | Artificial Immune Systems pp. 321 - 334 |
---|---|
Main Authors | , , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2006
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multiple sequence alignment (MSA) is one of the most important tasks in biological sequence analysis. This paper will primarily focus on on protein alignments, but most of the discussion and methodology also applies to DNA alignments. A novel hybrid clonal selection algorihm, called an aligner, is presented. It searches for a set of alignments amongst the population of candidate alignments by optimizing the classical weighted sum of pairs objective function. Benchmarks from BaliBASE library (v.1.0 and v.2.0) are used to validate the algorithm. Experimental results of BaliBASE v.1.0 benchmarks show that the proposed algorithm is superior to PRRP, ClustalX, SAGA, DIALIGN, PIMA, MULTIALIGN, and PILEUP8. On BaliBASE v.2.0 benchmarks the algorithm shows interesting results in terms of SP score with respect to established and leading methods, i.e. ClustalW, T-Coffee, MUSCLE, PRALINE, ProbCons, and Spem. |
---|---|
ISBN: | 3540377492 9783540377498 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11823940_25 |