Aligning Multiple Protein Sequences by Hybrid Clonal Selection Algorithm with Insert-Remove-Gaps and BlockShuffling Operators

Multiple sequence alignment (MSA) is one of the most important tasks in biological sequence analysis. This paper will primarily focus on on protein alignments, but most of the discussion and methodology also applies to DNA alignments. A novel hybrid clonal selection algorihm, called an aligner, is p...

Full description

Saved in:
Bibliographic Details
Published inArtificial Immune Systems pp. 321 - 334
Main Authors Cutello, V., Lee, D., Nicosia, G., Pavone, M., Prizzi, I.
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2006
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiple sequence alignment (MSA) is one of the most important tasks in biological sequence analysis. This paper will primarily focus on on protein alignments, but most of the discussion and methodology also applies to DNA alignments. A novel hybrid clonal selection algorihm, called an aligner, is presented. It searches for a set of alignments amongst the population of candidate alignments by optimizing the classical weighted sum of pairs objective function. Benchmarks from BaliBASE library (v.1.0 and v.2.0) are used to validate the algorithm. Experimental results of BaliBASE v.1.0 benchmarks show that the proposed algorithm is superior to PRRP, ClustalX, SAGA, DIALIGN, PIMA, MULTIALIGN, and PILEUP8. On BaliBASE v.2.0 benchmarks the algorithm shows interesting results in terms of SP score with respect to established and leading methods, i.e. ClustalW, T-Coffee, MUSCLE, PRALINE, ProbCons, and Spem.
ISBN:3540377492
9783540377498
ISSN:0302-9743
1611-3349
DOI:10.1007/11823940_25