On Rectilinear Duals for Vertex-Weighted Plane Graphs

Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal G}$\end{document} = (V,E) be a plane triangulated graph w...

Full description

Saved in:
Bibliographic Details
Published inGraph Drawing Vol. 3843; pp. 61 - 72
Main Authors de Berg, Mark, Mumford, Elena, Speckmann, Bettina
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2006
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal G}$\end{document} = (V,E) be a plane triangulated graph where each vertex is assigned a positive weight. A rectilinear dual of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal G}$\end{document} is a partition of a rectangle into |V| simple rectilinear regions, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge in E. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal G}$\end{document} admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant.
ISBN:9783540314257
3540314253
ISSN:0302-9743
1611-3349
DOI:10.1007/11618058_6