On Rectilinear Duals for Vertex-Weighted Plane Graphs
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal G}$\end{document} = (V,E) be a plane triangulated graph w...
Saved in:
Published in | Graph Drawing Vol. 3843; pp. 61 - 72 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2006
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal G}$\end{document} = (V,E) be a plane triangulated graph where each vertex is assigned a positive weight. A rectilinear dual of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal G}$\end{document} is a partition of a rectangle into |V| simple rectilinear regions, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge in E. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal G}$\end{document} admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant. |
---|---|
ISBN: | 9783540314257 3540314253 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11618058_6 |