Directionality volatility in electroencephalogram time series

We compare time series of electroencephalograms (EEGs) from healthy volunteers with EEGs from subjects diagnosed with epilepsy. The EEG time series from the healthy group are recorded during awake state with their eyes open and eyes closed, and the records from subjects with epilepsy are taken from...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 1739; no. 1
Main Authors Mansor, Mahayaudin M., Green, David A., Metcalfe, Andrew V.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 02.06.2016
Subjects
Online AccessGet full text
ISSN0094-243X
1551-7616
DOI10.1063/1.4952560

Cover

Loading…
More Information
Summary:We compare time series of electroencephalograms (EEGs) from healthy volunteers with EEGs from subjects diagnosed with epilepsy. The EEG time series from the healthy group are recorded during awake state with their eyes open and eyes closed, and the records from subjects with epilepsy are taken from three different recording regions of pre-surgical diagnosis: hippocampal, epileptogenic and seizure zone. The comparisons for these 5 categories are in terms of deviations from linear time series models with constant variance Gaussian white noise error inputs. One feature investigated is directionality, and how this can be modelled by either non-linear threshold autoregressive models or non-Gaussian errors. A second feature is volatility, which is modelled by Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) processes. Other features include the proportion of variability accounted for by time series models, and the skewness and the kurtosis of the residuals. The results suggest these comparisons may have diagnostic potential for epilepsy and provide early warning of seizures.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4952560