Impact of selenization with NaCl treatment on the physical properties and solar cell performance of crack-free Cu(In,Ga)Se2 microcrystal absorbers

In this study, we developed an ink using hexanethiol and Cu(In,Ga)Se2 microcrystals (CIGSe MCs) to make thin films via doctor blade coating. Besides, crack-free thin films were obtained by optimizing CIGSe MC powder concentration and annealing temperature. Subsequently, single-step selenization was...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 14; no. 7; pp. 4436 - 4447
Main Authors Marasamy, Latha, Aruna-Devi Rasu Chettiar, Ravichandran Manisekaran, Evangeline, Linda, Md Ferdous Rahman, M Khalid Hossain, Pérez García, Claudia Elena, Santos-Cruz, José, Subramaniam, Velumani, de Moure Flores, Francisco
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 31.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we developed an ink using hexanethiol and Cu(In,Ga)Se2 microcrystals (CIGSe MCs) to make thin films via doctor blade coating. Besides, crack-free thin films were obtained by optimizing CIGSe MC powder concentration and annealing temperature. Subsequently, single-step selenization was performed with and without sodium chloride (NaCl) surface treatment by carefully tuning the temperature. A crack-free surface with densely packed grains was obtained at 500 °C after NaCl treatment. Moreover, the structural parameters of the thin film (annealed at 350 °C) were significantly modified via selenization with NaCl at 500 °C. For instance, the FWHM of the prominent (112) plane reduced from 1.44° to 0.47°, the dislocation density minimized from 13.10 to 1.40 × 1015 lines per m2, and the microstrain decreased from 4.14 to 1.35 × 10−3. Remarkably, these thin films exhibited a high mobility of 26.7 cm2 V−1 s−1 and a low resistivity of 0.03 Ω cm. As a proof of concept, solar cells were engineered with a device structure of SLG/Mo/CIGSe/CdS/i-ZnO/Al–ZnO/Ag, wherein a power conversion efficiency (PCE) of 5.74% was achieved with exceptional reproducibility. Consequently, the outcomes of this investigation revealed the impact of selenization temperature and NaCl treatment on the physical properties and PCE of hexanethiol-based crack-free CIGSe MC ink-coated absorbers, providing new insights into the groundwork of cost-effective solar cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
DOI:10.1039/d3ra05829h