Antiferromagnetic magnon spintronic based on nonreciprocal and nondegenerated ultra-fast spin-waves in the canted antiferromagnet α-Fe2O3

Spin-waves in antiferromagnets hold the prospects for the development of faster, less power-hungry electronics and promising physics based on spin superfluids and coherent magnon condensates. For both these perspectives, addressing electrically coherent antiferromagnetic spin-waves is of importance,...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 9; no. 32; p. eadh1601
Main Authors El Kanj, Aya, Gomonay, Olena, Boventer, Isabella, Bortolotti, Paolo, Cros, Vincent, Anane, Abdelmadjid, Lebrun, Romain
Format Journal Article
LanguageEnglish
Published American Association for the Advancement of Science 11.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spin-waves in antiferromagnets hold the prospects for the development of faster, less power-hungry electronics and promising physics based on spin superfluids and coherent magnon condensates. For both these perspectives, addressing electrically coherent antiferromagnetic spin-waves is of importance, a prerequisite that has been so far elusive, because, unlike ferromagnets, antiferromagnets couple weakly to radiofrequency fields. Here, we demonstrate the detection of ultra-fast nonreciprocal spin-waves in the dipolar exchange regime of a canted antiferromagnet using both inductive and spintronic transducers. Using time-of-flight spin-wave spectroscopy on hematite (α-Fe2O3), we find that the magnon wave packets can propagate as fast as 20 kilometers/second for reciprocal bulk spin-wave modes and up to 6 kilometers/second for surface spin-waves propagating parallel to the antiferromagnetic Néel vector. We lastly achieve efficient electrical detection of nonreciprocal spin-wave transport using nonlocal inverse spin-Hall effects. The electrical detection of coherent nonreciprocal antiferromagnetic spin-waves paves the way for the development of antiferromagnetic and altermagnet-based magnonic devices.Spin-waves in antiferromagnets hold the prospects for the development of faster, less power-hungry electronics and promising physics based on spin superfluids and coherent magnon condensates. For both these perspectives, addressing electrically coherent antiferromagnetic spin-waves is of importance, a prerequisite that has been so far elusive, because, unlike ferromagnets, antiferromagnets couple weakly to radiofrequency fields. Here, we demonstrate the detection of ultra-fast nonreciprocal spin-waves in the dipolar exchange regime of a canted antiferromagnet using both inductive and spintronic transducers. Using time-of-flight spin-wave spectroscopy on hematite (α-Fe2O3), we find that the magnon wave packets can propagate as fast as 20 kilometers/second for reciprocal bulk spin-wave modes and up to 6 kilometers/second for surface spin-waves propagating parallel to the antiferromagnetic Néel vector. We lastly achieve efficient electrical detection of nonreciprocal spin-wave transport using nonlocal inverse spin-Hall effects. The electrical detection of coherent nonreciprocal antiferromagnetic spin-waves paves the way for the development of antiferromagnetic and altermagnet-based magnonic devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adh1601