Automatic Computer-Aided Histopathologic Segmentation for Nasopharyngeal Carcinoma Using Transformer Framework

The segmentation of the histopathological whole slide images (WSIs) of nasopharyngeal carcinoma (NPC) plays an essential role in the diagnosis, grading and even prognosis analysis. Due to the huge size of pathological images and the fact that NPC often occurs in the middle and advanced stages, it is...

Full description

Saved in:
Bibliographic Details
Published inComputational Mathematics Modeling in Cancer Analysis Vol. 13574; pp. 141 - 149
Main Authors Diao, Songhui, Tang, Luyu, He, Jiahui, Zhao, Hanqing, Luo, Weiren, Xie, Yaoqin, Qin, Wenjian
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The segmentation of the histopathological whole slide images (WSIs) of nasopharyngeal carcinoma (NPC) plays an essential role in the diagnosis, grading and even prognosis analysis. Due to the huge size of pathological images and the fact that NPC often occurs in the middle and advanced stages, it is still challenging to generate accurate segmentation results automatically. Although many convolutional neural network (CNN) methods had achieved good segmentation performance in many types of images, however, the encoding of global context is insufficient, and it is prone to misjudge the adjacent regions. Meanwhile, the area of NPC pathological image is dense, which means that the image with a tiny size may fall into one category. To overcome this limitation, we apply a transformer-based framework on NPC pathological images that is designed for extracting and encoding global context information. To validate and compare the transformer framework with various CNN-based methods, experiments have been conducted on the clinical dataset collection of NPC. The transformer framework outperformed the state-of-the-art pure CNN-based methods in AUC and recall. Especially, our framework achieved 2.5%–3.5% higher DSC in 5X images and 2.1%–3.2% higher DSC in 10X images than other methods.
Bibliography:S. Diao and L. Tang—Contributed equally to this work.
ISBN:9783031172656
3031172655
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-17266-3_14