Semi-supervised Semantic Visualization for Networked Documents
Semantic interpretability and visual expressivity are important objectives in exploratory analysis of text. On the one hand, while some documents may have explicit categories, we could develop a better understanding of a corpus by studying its finer-grained structures, which may be latent. By inferr...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Research Track Vol. 12977; pp. 762 - 778 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030865223 9783030865221 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-86523-8_46 |
Cover
Loading…
Summary: | Semantic interpretability and visual expressivity are important objectives in exploratory analysis of text. On the one hand, while some documents may have explicit categories, we could develop a better understanding of a corpus by studying its finer-grained structures, which may be latent. By inferring latent topics and discovering keywords associated with each topic, one obtains a semantic interpretation of the corpus. One the other hand, by visualizing documents, latent topics, and category labels on the same plot, one gains a bird’s eye view of the relationships among documents, topics, and various categories. Semantic visualization is a class of methods that unify both topic modeling and visualization. In this paper, we propose a novel semantic visualization model for networked documents that incorporates partial labels. We introduce coordinate-based label distribution and label-dependent topic distribution to visualize documents, topics, and labels in a semi-supervised way. We further derive three variants for singly-labeled, multi-labeled, and hierarchically-labeled documents. The focus on semi-supervision that employs variants of labeling structures is particularly novel. Experiments verify the efficacy of our model against baselines. |
---|---|
ISBN: | 3030865223 9783030865221 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-86523-8_46 |