Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials
The interplay of magnetism and topology is a key research subject in condensed matter physics, which offers great opportunities to explore emerging new physics, such as the quantum anomalous Hall (QAH) effect, axion electrodynamics, and Majorana fermions. However, these exotic physical effects have...
Saved in:
Published in | Science advances Vol. 5; no. 6; p. eaaw5685 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Association for the Advancement of Science
14.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The interplay of magnetism and topology is a key research subject in condensed matter physics, which offers great opportunities to explore emerging new physics, such as the quantum anomalous Hall (QAH) effect, axion electrodynamics, and Majorana fermions. However, these exotic physical effects have rarely been realized experimentally because of the lack of suitable working materials. Here, we predict a series of van der Waals layered MnBi2Te4-related materials that show intralayer ferromagnetic and interlayer antiferromagnetic exchange interactions. We find extremely rich topological quantum states with outstanding characteristics in MnBi2Te4, including an antiferromagnetic topological insulator with the long-sought topological axion states on the surface, a type II magnetic Weyl semimetal with one pair of Weyl points, as well as a collection of intrinsic axion insulators and QAH insulators in even- and odd-layer films, respectively. These notable predictions, if proven experimentally, could profoundly change future research and technology of topological quantum physics.The interplay of magnetism and topology is a key research subject in condensed matter physics, which offers great opportunities to explore emerging new physics, such as the quantum anomalous Hall (QAH) effect, axion electrodynamics, and Majorana fermions. However, these exotic physical effects have rarely been realized experimentally because of the lack of suitable working materials. Here, we predict a series of van der Waals layered MnBi2Te4-related materials that show intralayer ferromagnetic and interlayer antiferromagnetic exchange interactions. We find extremely rich topological quantum states with outstanding characteristics in MnBi2Te4, including an antiferromagnetic topological insulator with the long-sought topological axion states on the surface, a type II magnetic Weyl semimetal with one pair of Weyl points, as well as a collection of intrinsic axion insulators and QAH insulators in even- and odd-layer films, respectively. These notable predictions, if proven experimentally, could profoundly change future research and technology of topological quantum physics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Deceased |
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aaw5685 |