Early Detection of Fake News with Multi-source Weak Social Supervision

Social media has greatly enabled people to participate in online activities at an unprecedented rate. However, this unrestricted access also exacerbates the spread of misinformation and fake news which cause confusion and chaos if not detected in a timely manner. Given the rapidly evolving nature of...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 12459; pp. 650 - 666
Main Authors Shu, Kai, Zheng, Guoqing, Li, Yichuan, Mukherjee, Subhabrata, Awadallah, Ahmed Hassan, Ruston, Scott, Liu, Huan
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Social media has greatly enabled people to participate in online activities at an unprecedented rate. However, this unrestricted access also exacerbates the spread of misinformation and fake news which cause confusion and chaos if not detected in a timely manner. Given the rapidly evolving nature of news events and the limited amount of annotated data, state-of-the-art systems on fake news detection face challenges for early detection. In this work, we exploit multiple weak signals from different sources from user engagements with contents (referred to as weak social supervision), and their complementary utilities to detect fake news. We jointly leverage limited amount of clean data along with weak signals from social engagements to train a fake news detector in a meta-learning framework which estimates the quality of different weak instances. Experiments on real-world datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
ISBN:3030676633
9783030676636
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-67664-3_39