Causal Explanation of Convolutional Neural Networks
In this paper we introduce an explanation technique for Convolutional Neural Networks (CNNs) based on the theory of causality by Halpern and Pearl [12]. The causal explanation technique (CexCNN) is based on measuring the filter importance to a CNN decision, which is measured through counterfactual r...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Research Track Vol. 12976; pp. 633 - 649 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we introduce an explanation technique for Convolutional Neural Networks (CNNs) based on the theory of causality by Halpern and Pearl [12]. The causal explanation technique (CexCNN) is based on measuring the filter importance to a CNN decision, which is measured through counterfactual reasoning. In addition, we employ extended definitions of causality, which are responsibility and blame to weight the importance of such filters and project their contribution on input images. Since CNNs form a hierarchical structure, and since causal models can be hierarchically abstracted, we employ this similarity to perform the most important contribution of this paper, which is localizing the important features in the input image that contributed the most to a CNN’s decision. In addition to its ability in localization, we will show that CexCNN can be useful as well for model compression through pruning the less important filters. We tested CexCNN on several CNNs architectures and datasets. (The code is available on https://github.com/HichemDebbi/CexCNN) |
---|---|
ISBN: | 3030865193 9783030865191 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-86520-7_39 |