LipsID Using 3D Convolutional Neural Networks
This paper presents a proposition for a method inspired by iVectors for improvement of visual speech recognition in the similar way iVectors are used to improve the recognition rate of audio speech recognition. A neural network for feature extraction is presented with training parameters and evaluat...
Saved in:
Published in | Speech and Computer Vol. 11096; pp. 209 - 214 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a proposition for a method inspired by iVectors for improvement of visual speech recognition in the similar way iVectors are used to improve the recognition rate of audio speech recognition. A neural network for feature extraction is presented with training parameters and evaluation. The network is trained as a classifier for a closed set of 64 speakers from the UWB-HSCAVC dataset and then the last softmax fully connected layer is removed to gain a feature vector of size 256. The network is provided with sequences of 15 frames and outputs the softmax classification to 64 classes. The training data consists of approximately 20000 sequences of grayscale images from the first 50 sentences that are common to every speaker. The network is then evaluated on the 60000 sequences created from 150 sentences from each speaker. The testing sentences are different for each speaker. |
---|---|
ISBN: | 3319995782 9783319995786 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-99579-3_22 |