Effects of Random Sampling on SVM Hyper-parameter Tuning
Hyper-parameter tuning is one of the crucial steps in the successful application of machine learning algorithms to real data. In general, the tuning process is modeled as an optimization problem for which several methods have been proposed. For complex algorithms, the evaluation of a hyper-parameter...
Saved in:
Published in | Intelligent Systems Design and Applications Vol. 557; pp. 268 - 278 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Advances in Intelligent Systems and Computing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hyper-parameter tuning is one of the crucial steps in the successful application of machine learning algorithms to real data. In general, the tuning process is modeled as an optimization problem for which several methods have been proposed. For complex algorithms, the evaluation of a hyper-parameter configuration is expensive and their runtime is speed up through data sampling. In this paper, the effect of sample sizes to the results of hyper-parameter tuning process is investigated. Hyper-parameters of Support Vector Machines are tuned on samples of different sizes generated from a dataset. Hausdorff distance is proposed for computing the differences between the results of hyper-parameter tuning on two samples of different size. 100 real-world datasets and two tuning methods (Random Search and Particle Swarm Optimization) are used in the experiments revealing some interesting relations between sample sizes and results of hyper-parameter tuning which open some promising directions for future investigation in this direction. |
---|---|
Bibliography: | Tomáš Horváth is also a member of the Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia. |
ISBN: | 9783319534794 3319534793 |
ISSN: | 2194-5357 2194-5365 |
DOI: | 10.1007/978-3-319-53480-0_27 |