A Calibration Method of Compliant Planar Parallel Manipulator
Flexure hinge is usually used in micro-nano positioning parallel manipulator. High precision kinematics model is the basis of high performance control. In this paper, the stiffness modeling and calibration methods of 3-RPR micro-nano positioning parallel manipulator are studied. The kinematics model...
Saved in:
Published in | Intelligent Robotics and Applications Vol. 13014; pp. 257 - 266 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Flexure hinge is usually used in micro-nano positioning parallel manipulator. High precision kinematics model is the basis of high performance control. In this paper, the stiffness modeling and calibration methods of 3-RPR micro-nano positioning parallel manipulator are studied. The kinematics model of the 3-RPR parallel manipulator is established and the stiffness model of the compliant mechanism is established based on the virtual work principle. Given the driving force vector of the branch chain, the output pose of the end-effector of the manipulator is obtained by finite element analysis. The parameters of the stiffness model are identified by the least square method. Compared with the theoretical results of the finite element model, the validity of the stiffness modeling and calibration methods is verified, which provides a theoretical basis for the experimental verification. |
---|---|
ISBN: | 9783030890971 303089097X |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-89098-8_24 |