Off-Policy Differentiable Logic Reinforcement Learning
In this paper, we proposed an Off-Policy Differentiable Logic Reinforcement Learning (OPDLRL) framework to inherit the benefits of interpretability and generalization ability in Differentiable Inductive Logic Programming (DILP) and also resolves its weakness of execution efficiency, stability, and s...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases. Research Track Vol. 12976; pp. 617 - 632 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we proposed an Off-Policy Differentiable Logic Reinforcement Learning (OPDLRL) framework to inherit the benefits of interpretability and generalization ability in Differentiable Inductive Logic Programming (DILP) and also resolves its weakness of execution efficiency, stability, and scalability. The key contributions include the use of approximate inference to significantly reduce the number of logic rules in the deduction process, an off-policy training method to enable approximate inference, and a distributed and hierarchical training framework. Extensive experiments, specifically playing real-time video games in Rabbids against human players, show that OPDLRL has better or similar performance as other DILP-based methods but far more practical in terms of sample efficiency and execution efficiency, making it applicable to complex and (near) real-time domains. |
---|---|
ISBN: | 3030865193 9783030865191 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-86520-7_38 |