Programming Multi-robot Systems with X-KLAIM
Software development for robotics applications is still a major challenge that becomes even more complex when considering a Multi-Robot System (MRS). Such a distributed software has to perform multiple cooperating tasks in a well-coordinated manner to avoid unsatisfactory emerging behavior. This pap...
Saved in:
Published in | Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning Vol. 13703; pp. 283 - 300 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer
2022
Springer Nature Switzerland |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3031197585 9783031197581 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-19759-8_18 |
Cover
Summary: | Software development for robotics applications is still a major challenge that becomes even more complex when considering a Multi-Robot System (MRS). Such a distributed software has to perform multiple cooperating tasks in a well-coordinated manner to avoid unsatisfactory emerging behavior. This paper provides an approach for programming MRSs at a high abstraction level using the programming language X-Klaim. The computation and communication model of X-Klaim, based on multiple distributed tuple spaces, permits to coordinate with the same abstractions and mechanisms both intra- and inter-robot interactions of an MRS. This allows developers to focus on MRS behavior, achieving readable and maintainable code. The proposed approach can be used in practice through the integration of X-Klaim and the popular robotics framework ROS. We show the proposal’s feasibility and effectiveness by implementing an MRS scenario. |
---|---|
Bibliography: | This work was partially supported by the PRIN projects “SEDUCE” n. 2017TWRCNB and “T-LADIES” n. 2020TL3X8X, and the INdAM - GNCS Project “Proprietà qualitative e quantitative di sistemi reversibili” n. CUP_E55F2200027001. |
ISBN: | 3031197585 9783031197581 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-19759-8_18 |