Automatic Recognition of Speaker Age and Gender Based on Deep Neural Networks
In the given article, we present a novel approach in the paralinguistic field of age and gender recognition by speaker voice based on deep neural networks. The training and testing of proposed models were implemented on the German speech corpus aGender. We conducted experiments using different netwo...
Saved in:
Published in | Speech and Computer Vol. 11658; pp. 327 - 336 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the given article, we present a novel approach in the paralinguistic field of age and gender recognition by speaker voice based on deep neural networks. The training and testing of proposed models were implemented on the German speech corpus aGender. We conducted experiments using different network topologies, including neural networks with fully-connected and convolutional layers. In a joint recognition of speaker age and gender, our system reached the recognition performance measured as unweighted accuracy of 48.41%. In a separate age and gender recognition setup, the obtained performance was 57.53% and 88.80%, respectively. Applied deep neural networks provide the best result of speaker age recognition in comparison to existing traditional classification methods. |
---|---|
ISBN: | 3030260607 9783030260606 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-26061-3_34 |